
Autonomous Terrain Characterisation and Modelling for Dynamic Control 
of Unmanned Vehicles 

A. Talukder, R. Manduchi*, R. Castano, K. Owens, L. Matthies, A. Castano, R. Hogg 

Jet Propulsion Laboratory, Calgornia Institute of Technology 

Email: [ashit. talukder, rebeccaxastano, 1arry.h. matthies, andresxastano, robert. w. hogg]@.jpl.nasa.gov 

*University of Calgornia at Santa Cruz 

Pasadena, CA. Tel. (818)354-1000 - Fax (818)393-3302 

Santa C m ,  CA. Tel. (831)459-1479 - Fax (818)459-4829. Email: manduchi@soe.ucsc.edu 

Abstract 

An often-ignored aspect of unmanned cross-country 
vehicles is the dynamic response of the vehicle on dffer- 
ent terrain. We discuss techniques to predict the dynamic 
vehicle response to various natural obstacles. This 
method can then be used to adjust the vehicle dynamics 
to optimize pegormanee (e.g. speed) while ensuring that 
the vehicle is not damaged. This capability opens up a 
new area of obstacle negotiation for UGVs, where the 
vehicle moves over certain obstacles, rather than avoid- 
ing them, thereby resulting in more effective achievement 
of objectives. Robust obstacle negotiation and vehicle 
dynamics prediction requires several key technologies 
that will be discussed in this paper. We detect and seg- 
ment (label) obstacles using a novel 3 0  obstacle algo- 
rithm. The material of each labelled obstacle (rock, vege- 
tation, etc.) is then determined using a texture or color 
classification scheme. Terrain load-bearing surface mod- 
els are then constructed using vertical springs to model 
the compressibility and traversability of each obstacle in 
front of the vehicle. The terrain model is then combined 
with the vehicle suspension model to yield an estimate of 
the maximum safe velocity, and predict the vehicle dy- 
namics as the vehicle follows a path. This end-to-end 
obstacle negotiation system is envisioned to be usejsrl in 
optimized path planning and vehicle navigation in ter- 
rain conditions cluttered with vegetation, bushes, rocks, 
etc. Results on natural terrain with various natural mate- 
rials are presented 
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1. Introduction 
Driving in cross-country vegetated environments re- 

quires a higher level of scene understanding and vehicle 
control than in arid terrain or static urban environments. 
In the latter cases the trafficability of a given path is de- 
termined solely by the presence or the absence of obsta- 

cles that may hamper the vehicle's moving. Obstacles 
should be avoided when they are tall enough to harm the 
vehicle (such as a wall, a telephone pole or a big rock), 
or, if they are of small dimension, they may be driven 

Figure I :  Example of natural terrain that re- 
quires obstacle negotiation 

over at low speed. The underlying assumption in these 
kinds of environments is that all materials in the scene are 
uncompressible. Thus, the "load-bearing surface" along a 
path corresponds to the actual visible surface, meaning 
that geometry description (as acquired by range sensors 
such as stereo cameras or lidars) provides enough percep 
tual information to control the vehicle, that is, to decide 
the most appropriate path and optimal velocity. 

In contrast, objects or surfaces composed by vegetative 
material are often rather compressible. Think for example 
of a thin bush (see Figure 1) or a tuft of tall grass: such 
"obstacles" are indeed traversable by a suitably sized ve- 
hicle, even when their height is such that they would harm 
the vehicle were they made of "hard" material (such as 
rock, concrete or wood.) A system unaware of the com- 
pressibility properties of such materials would avoid all 
such "obstacles", resulting in unnecessary tortuous and 
inefficient paths. An extreme case is given by a field of 
tall grass, where the vehicle is faced with a continuum of 
apparent obstacles. Thus, traditional sensing and control 
mechanisms should be revisited for autonomous naviga- 
tion in vegetated terrain, where obstacle negotiation is an 
important and complex component of the problem. 

This paper presents a combined approach to obstacle 
negotiation, comprising the operations of obstacle detec- 
tion, terrain cover classification and compressibility char- 
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acterization, and dynamic vehicle modeling (see Figure 
2). Each module in Figure 2 provides information that is 
used for the characterization of vehicle dynamics over the 
terrain. The obstacle detector provides 3D 
shape/geometrical information about each obstacle. Tex- 
ture and color reasoning combined with the 3D geometri- 
cal information provide information about the material 
class of each obstacle. This shape and material informa- 
tion is then used by the vehicle velocity control module 
(green block in Figure 2). 

We introduce a simple springdamper model for repre- 
senting the reactive characteristics of an obstacle. If the 
obstacle is made of uncompressible material (e.g., a 
rock), then the spring constant is infinite; otherwise, it is 
assigned a finite value depending on the material. The 
vertical acceleration of the vehicle as it traverses a candi- 
date path at a given velocity is predicted by considering 
the height profile of the path, the dynamic characteristics 

Figure 2: The modules in our terrain negotiation 
procedure. Shadedcolor portions show the modules 
discussed in this paper for obstacle negotiation. 
of the vehicle (modeled by a springdamper parallel), and 
the reactive characteristics of obstacles along the path. 
This predicted acceleration profile is at the basis of our 
obstacle negotiation strategy, allowing us to determine the 
"optimal" velocity for the traversal, that is, the maximum 
velocity such that the peak vertical acceleration is below a 
preassigned value. 
The paper is organized as follows: Our obstacle detection 
and segmentation algorithm is discussed in Section 2. 
Section 3 details our obstacle reasoning algorithms, in- 
cluding geometrical shape-based reasoning (Section 3.1), 
terrain material classification using texture (Section 3.2) 
and color classifiers (Section 3.3). In Section 4, we dis- 
cuss our loadbearing surface modelling technique for 
prediction of vehicle dynamics as it negotiates detected 
obstacles. Results are presented in Section 5. 

2. Obstacle characterisation algorithm 

2.1. Obstacle detection 
Obstacle detection is one of the main requirements of 

mobile robots. Positive obstacles correspond to objects 
that project upwards from the ground, such as bushes, 
trees, grass, poles, road signs, etc. Detection of positive 

obstacles have previously involved fitting of ground 
planes to 3D elevation maps, and classifying all groups of 
pixels above the ground plane as obstacles, or using slope 
measures along columns in the range image [BelluttaOO] 
to locate obstacles, followed by 2D blob colouring to 
remove small obstacles. 

The plane fitting technique fails when the scene has 
elevation variations, which occurs frequently in natural 
terrain. The column-wise scanning technique works well 
when obstacles are vertically oriented, but fails for 
slanted sloped objects. 

We develop a true 3D obstacle detector that searches 
for surrounding pixels in 3D space that satisfy the .slope 
and height criteria at each valid pixel location. We use 
efficient techniques for doing such searches in the 2D 
range-elevation image data available to us. Details of our 
obstacle detector are provided in [Talukder02]. 

2.2. Obstacle segmentation 
Obstacle segmentation for mobile robotics have mostly 

used 2D blob-based measures to reduce false obstacle 
detection [BelluttaOO]. This is inadequate when obstacles 
that are separated in depth in 3D space are adjacent in 2D 
image space due to overlap in their x,y coordinates. 

Our 3D obstacle detection algorithm using searches in 
3D space inherently does obstacle segmentation as a by- 
product. We [Talukder02] color valid obstacle pixels as 
we proceed along the range-elevation map in row-scan 
order, and recolor those that are sufficiently close in 3D 
space. This results in a truly 3D segmented obstacle im- 
age, where obstacles that are spatially adjacent in x,y (2D 
image space) are assigned different labels if they are far 
away in depth. The obstacle segmentation algorithm is 
detailed in [Talukder02]. 

3. Obstacle Reasoning 
Obstacle material reasoning provide useful information 

for the terrain modelling and path planning algorithms. 
Robust obstacle reasoning should be able to (I)  prune 
false obstacles, and (2) provide adequate information to 
model the response of each obstacle to vehicle dynamics. 
We use three disparate obstacle reasoning methods, each 
of which provides unique (and complementary) informa- 
tion about each obstacle. We use geometrical 3D obstacle 
information from the obstacle detector, and material clas- 
sification using texture and color information. We then 
fuse the information from these modules that yields more 
robust obstacle pruning and material reasoning results 
than each individual method. 

3.1. Geometrical and Shape-based Reasoning 
Prior 3-D model-based reasoning for robotics 

[HooveBI] typically require converting the 3-D point 
data into a mesh representation, which is a complex op- 
eration. We compute 3-D geometrical features from the 
raw point-cloud data, which enables real-time analysis. 



We extract simple 3-D geometrical measures fiom each 
obstacle, including the 3D perimeter, and aver- 
age/maximum obstacle slope & relative height. These 
geometrical measures are automatically derived during 
the obstacle segmentation process, without any extra 
computational overhead. If any of the five variables have 
a value less than the pre-selected thresholds (i.e. object is 
too small, low average.maximum slope, etc.), it is re- 
jected as a false obstacle. Figure 5a shows examples of 
false-objects (flat areas) that are correctly rejected (red 
coloured areas) after obstacle reasoning. 

3.2. Texture-based Material Classification 
Visual texture can provide valuable information about 

the identity of imaged objects. Obstacles within a class, 
such as bushes, often have similar texture signatures and 
thus, when combined with obstacle detection, texture can 
be used to discriminate among several classes of obsta- 
cles. Texture can perform well in cases where color clas- 
sification is ineffective or not possible. For example, it 
works well on infrared images taken at night. Further- 
more, there are classes of materials such as dry vegeta- 
tion, bark, and soil that are difficult to distinguish with 
color but can be readily distinguished using texture. 

Texture measures the local intensity variation at differ- 
ent orientations and spatial frequencies. Local texture 
features condense information fiom a small neighborhood 
of a given pixel. Our features are obtained by convolving 
each filter in a multiscale, multioriented Gabor filter bank 
with the original image. Such feature operators have 
proven to be effective and have become a standard choice 
in most of the recent texture analysis algorithms in the 
literature. With the extracted features, we use a classifier 
to label the image pixels. The classifier models the prob- 
ability distribution fbnction of the texture features for 
each obstacle class as a mixture of three Gaussians, and 
performs a Maximum Likelihood (ML) classification. 
The Expectation-Maximization (EM) algorithm is used to 
train each class of the classifier. The classification 
method is detailed in [Castano 20011. 

3.3. Color-based Material Classification 
Color features are attractive because they provide useful 
information about terrain type and produce classification 
results with small computational cost. We used the 
Bayesian color classifier that we developed for the 
DEMO I11 project [Shoemaker98], which uses Gaussian 
mixtures to model the classconditional color likelihoods. 
Our system uses three terrain surface classes: "green 
vegetation", "dry vegetation", and "soiVrock". A fourth 
default class ("outlier") accounts for surfaces whose ap- 
parent color is not well represented by any of such three 
classes. Green vegetation and dry vegetation are typically 
well separable in color space. One reason to keep these 
two classes separated (rather than having a common 
"vegetation" class) is that the dry vegetation class in- 
cludes bark and therefore tree trunks, which are usually 

not traversable. Green vegetation, instead, typically in- 
cludes only grass, bushes and leaves. Figure 3 shows 
color classification results on natural terrain. Note that in 
some instances it may be very difficult to separate bark 
fiom other kinds of dry vegetation, or dry vegetation from 
some types of soil, based solely on color [Roberts93]. 
Discrimination can be improved in these cases by fusing 
color information with evidence from other visual fea- 
tures (such as texture and shape analysis.) 
The measured radiance spectrum is a function of the illu- 
minant spectrum and surface reflectance. To correct for 
changes in the sunlight spectrum, standard white point 
calibration procedures (often implemented in hardware 
onboard the camera) may be used. Note however that it is 
not possible in principle to correct for both sunlight and 
diffuse ambient light at the same time, due to their differ- 
ent s[ to the 

Figure 3. Original & Color-based classijkation 
@om [BelluttaOOJ (brown = soil; yellow = dry vegeta- 
tion; green = green vegetation; red = outlier). Pixels 
further than 50 m have not been classijied 
problem is to correct for the sunlight spectrum using a 
white reference, and to deal with other variations of the 
illuminant using a rich enough statistical model trained 
with a large and possibly diversified set of training data. 

4. Terrain Load Bearing Surface Modeling for 
Vehicle Dynamics 

One important desired feature in UGVs is the ability to 
know which obstacles to avoid, the intelligence to slow 
down when hard "uncompressible" obstacles are detected 
and continue driving normally when traversable ("com- 
pressible") objects such as tall grass or thin bushes are 
encountered. The modules discussed so far provide in- 
formation about the location, shape and size of each ob- 
stacle, and the material or class of each obstacle (stone, 
vegetation, etc.) This information can be used to estimate 
the "compressibility" of each object in the scene. We use 
springs to model terrain compressibility of each obstacle. 
The vehicle dynamic suspension is also modelled using 
another spring, which is based on work done previously 
at JPL [Rankin98]. Our work is an improvement to that 
suggested in Wankin981 in that it considers terrain com- 
pressibility, a critical issue in obstacle negotiation. 

' Outliers are detected by thresholding the likelihood of 
the color of each pixel according to our model [Rip- 
ley961. 



Therefore, as shown in Figure 4, we view the vehicle 
and its load-bearing surface as a mass-spring system, 
where the quarter-model of the vehicle (one wheel in a 
four-wheeled vehicle) and terrain are each modelled as 
springs, each with its own spring parameters. We assume 
that the spring constant KO of each terrain obstacle class 
is unique and known a-priori (our initial tests indicate the 
feasibility of using learning to improve the spring models 
online, but is not discussed here due to space constraints). 

is a function of the obstacle material (described 
mathematically by the material’s sheadelastic modulus), 
and the height of the obstacle. Stone/rocks and logs have 
large sheadelastic modulus), tall grass has low 
sheadelastic modulus, and bushes have a medium 
modulus. For a given obstacle of known material (and 
known sheadelastic modulus), we assume that the spring 
constant is proportional to its height, similar to spring coil 
models, i.e. the taller an obstacle, the larger is its spring 
constant KO. Note that the obstacle height is obtained 
automatically fi-om our obstacle segmentation routine, 
and therefore a separate ground-plane fitting algorithm is 
not required for height estimation. 

In order to limit the forces that the vehicle is subjected 
to while driving over terrain, we derive a relation between 
the vehicle’s velocity and the vertical acceleration. The 
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Figure 4: Terrain-vehicle spring model system for 
vehicle velocity control 

model shown in Fig. 4 can be used to approximate the 
dynamic motion of a quarter vehicle suspension system 
over various terrain types, where M ,  K ,  C, z,  and zT are 
the quarter vehicle mass, the effective suspension spring 
constant of the vehicle and terrain class in front, the ef- 
fective suspension damping, and the displacements from 
equilibrium of the mass M and tire axle. The equation 
describing the motion of this system is 

The effective spring constant K of two springs in series 
(vehicle and obstacle) with each other are equivalent to 
two resistors in parallel, i.e. 1/K = I/Kv + I/Ko. There- 
fore, the presence of a vegetation obstacle would lower 
the effective spring constant, and stone obstacles would 
result in larger effective spring constants. For current 
purposes, we assume that the spring damping coefficient 
is the same for all objects and the vehicle suspension. 

For this effective spring-mass system, we now derive 
our velocity and acceleration prediction techniques for a 
case where only one obstacle of a known material type is 
present in front of the vehicle. We shall later generalize 
this to the case where several obstacles of dferent mate- 
rial types are present in the scene. It is clear fiom equa- 
tion l that if the relative displacement and its derivative 
are known, the vertical acceleration of the vehicle can be 
computed. For a given vehicle and a single obstacle with 
known material class, equation (1) simplifies to 

d 2 r  C dr K d 2 h  

d t 2  M dt M dt2 
- + - - + - r = -  

where the relative displacement, r, and the road height, 
h, are given b y r  = z -zT, h = -zT . 

We use exactly the approach used in [Rankin981 to 
solve for the dynamic control problem, for a given obsta- 
cle material type (and therefore a known effective spring 
constant for the vehicle-obstacle spring system). Only the 
outline of the derivation is provided, and the reader is 
referred to [Rankin981 for details. Using 

xl = r, x2 = dr 1 dt , in matrix notation, 
+ = d2h 

where A = [ 21, M M  

= (: ) , yields the solution 

(2) 

Ignoring initial conditions for now (we will discuss 
them later), we change the dependent variable to distance 
(since the data is available as a range/elevation map), 

resulting in x(l) = ,TJ I l eu  l(s-ll( $) where 

h(t) = H(s(t)) , and U is the vehicle forward velocity. 
After simplification [Rankin98], we can write the vertical 
vehicle acceleration as, 

- 
0 

un a = c2 f,” - UC,~,” - -c3f3n 
U 

and h”, ft”, and hn are functions of the terrain elevation 
slope and its double derivative. To avoid damaging the 
vehicle, we ensure that the vertical acceleration is bound- 
ed and choose vehicle velocity U such that 

Aln I a l=I czf,” - UC,f,” - --c3f3” Is a m  (4), 
U 

which would be the maximum-valued root of 
UZC,J;””+U(IC, I J y ” - U & + f Y & ~ = O  (5). 



For a single obstacle in front of the vehicle, Eq. (3) is 
used to predict the acceleration of the vehicle when the 
material class, and therefore the spring model parameters 
of the obstacle is known, and Eq. (4) yields the maximum 
safe velocity when the vehicle traverses the obstacle. In 
practice, we model the elevation map along the path fol- 
lowed by the vehicle as cubic-splines to accommodate 
missing data points in the range/elevation map directly in 
front of the vehicle. 

For the case when several obstacles are present in front 
of the vehicle, we divide the traversal path into segments, 
corresponding to non-obstacle segments, and obstacle 
segments. For N obstacles in front the vehicle, the tra- 
versal path is therefore divided into (2N + 1) segments. 
We apply the velocity control and acceleration prediction 
algorithms on each segment with its own spring model 
parameters; for e.g, the effective spring constant for solid 
ground/soil segments is K = Kv (since KO = infinity). 

An issue that arises in modeling the system dynamics 
are the initial conditions of the system xo = [r dr/dt]. 
When the vehicle starts from a stationary state, the initial 
conditions (Eq. 2) can be assumed to be zero. For a case 
where N obstacles are present, we assume that the initial 
conditions at the beginning of each of the (2N + 1) seg- 
ments is xa = [O 01. This is a reasonable assumption for 
the n'th segment of the vehicle's path, i f  the vehicle zero 
vertical velocity at the end of the (n-1)'th segment. This 
holds true if the terrain at the end of the (n-I) 'th segment 
has relatively low elevation changes. This is a realistic 
assumption since the beginning and end of each obstacle 
or non-obstacle segment is generally flavgently sloping. 

Incorporating the true initial conditions at the beginning 
of each of the (2N + 1) segments is, however, expected to 
give more accurate predictions of vehicle dynamics and 
will be implemented in future work. 

5. Results 
We present results of our end-to-end obstacle negotia- 

tion algorithms. This includes the obstacle detector, and 
obstacle labeling (Section 2), obstacle reasoning using 
shape and texture classifiers (Section 3), and velocity 
control and terrain modelling (Section 4). 

We tested our terraidobstacle negotiation algorithms 
on terrain comprised of 4 traversible objects, namely two 
logs, a bush, and a stone. Grayscale stereo cameras were 
used, due to which material classification was done using 
the texture classifier (Section 3.2) only. Range data was 
obtained using JPL stereo algorithms. An inertial meas- 
urement unit (IMU) was placed on the vehicle to measure 
vehicle velocity and accelerations. These IMU measure- 
ments were used to verify the accuracy of our terrain 
modeling & velocity control prediction algorithms. 

We used three obstacle material classes for the texture 
classifier: log, bush and rock. We trained on several im- 
ages of the obstacles, using only image pixels of the ob- 
stacle, and tested the classifier on the obstacles detected 

in complete sequences of images. During testing, we did 
not employ an outlier detector, thus each pixel is assigned 
to one of the three obstacle classes. The classifier is very 
effective for the obstacles for which it was trained, how- 
ever the assigned label is only meaningful for pixels rep- 
resenting obstacles. Regions in the image representing 
classes not used for training, such as sky or flat ground, 
receive arbitrary labels. In each test image, we computed 
a class label for every obstacle pixel. 

We consider combined texture/color classification with 
obstacle segmentation information to achieve better ob- 
stacle reasoning. Prior work on Demo I11 [BelluttaOO] 
used a majority-based decision using the color classifier 
on each 2D obstacle blob. In our preliminary tests, we 
classify each segmented 3D obstacle using a majority 
classification voting. Using true 3D segmented obstacles 
is expected to yield better material classification than 
texture classification on 2D obstacle blobs that may actu- 
ally contain 2 or more overlapping obstacles. 

Figure 5a shows a color image of a stone in front of the 
vehicle, and Figure 5b shows the true obstacles (blue) and 
the rejected false obstacles (red) after shape/geometrical 
reasoning. Figure 5c shows the segmented obstacle map 
with each obstacle assigned a unique color. The texture 
classification results on obstacles within 15 metres from 
the vehicle are shown in Fig. 5b, with stone regions as 
blue and vegetated obstacles as green. Note that the fu- 
sion of the texture material classifier and the obstacle 

(dl (e) 
Figure 5: (a) Stone obstacle (b) detected obstacles 

(blue) and rejected (red) (c) Segmented obstacle image 
(4 texture classiJied image of obstacles within I5 metres 
(blue- stone, green- vegetation) and (e) Predicted vs. 
actual acceleration magnitude for stone obstacle. 
detector results in more robust reasoning. The stone is 
classified as a valid obstacle since it is of sufficiently 
height (based on geometrical reasoning) and is classified 
as rock by the texture classifier. The other two regions 
(green patches in Figure 6b) that are incorrectly labeled 
as obstacles by the shape reasoning procedure are cor- 
rectly classified as vegetation (low grass) by the texture 



classifier. Using a majority-based decision on labeled 
obstacles, rather than pixel-based classification, makes 
the texture material classification performance signifi- 
cantly better than individual pixel-based classification. 
The absolute value of the predicted acceleration for the 
vehicle as it moves at a constant speed is shown as a red 
line in Fig. 5d. Note that the absolute acceleration value 
is required to assess vehicle tolerance limits (the sign, i.e. 
direction of acceleration is not needed). The absolute 
value of the true acceleration of the vehicle measured 
from the IMU is shown as a green plot. The sharp peak 
corresponds to the time that the vehicle moves over the 
stone. 

First, terrain cover classification based on color and tex- 
ture needs to be made more robust to various environ- 
mental conditions and more computationally efficient. 
We are also considering different sensors, such as multis- 
pectral cameras in the thermal infrared domain and lidars, 
to achieve terrain classification when color or texture 
analysis fail. Second, pixel-wise classification, as ob- 
tained by color or texture, should be combined with ex- 
plicit shape reasoning in order to correctly characterize an 
obstacle. For example, an obstacle shaped like a thin pole 
may correspond to a tree trunk and should not be con- 
fused with a dry bush, even if the color may be similar in 
the two cases. Third. the relationshh between material 
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Figure 6: (a) Bush obstacle (b)detected obstacles (blue) 

and rejected (red) (c) Segmented obstacle image (d) tex- 
ture classified image of obstacles within I5 metres (green- 
vegetation) and (e) Predicted vs. actual absolute accelera- 
tion for bush obstacle 

Figure 6 shows results as the vehicle negotiates a me- 
dium-sized bush. The obstacle detection algorithm cor- 
rectly detects (Figure 6b) and segments (Figure 6c) the 
bush in the foreground and the background obstacles. The 
texture classifier classifies the bush as a vegetation class 
(green), which results in a low effective spring contant for 
that segment of the terrain. Therefore, even though the 
bush is actually significantly taller than the stone in Fig- 
ure 5, the velocity control algorithm predicts a small ac- 
celeration peak on the bush (red line plot in Figure 6e), 
which is verified via the true vehicle dynamics IMU 
measurements (green line plot in Figure 6e). 

6. Conclusions and Future Work 
We have presented an integrated approach to obstacle 

negotiation in sparsely vegetated terrain. This technique 
represents a clear improvement with respect to traditional 
obstacle avoidance procedures, and has the potential to 
dramatically increase the efficiency of autonomous vehi- 
cles in cross-country environments. While our prelimi- 
nary experiments show very promising results, several 
hurdles lay ahead and are the object of current research. 
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