
Event-based systems and Software Architectures:
Out of the Shadows and into the Mainstream

w Panelist: Nicolas Rouquette, NASA JPL
Context: The Mission Data System project (MDS)

w Relation:
w MDS uses t w o architecture styles

State Analysis (invented at JPL)
ComponentKonnector style based on xADL2.0

1

Timing @ JPL

Internal factors
+
+

State analysis fundamentally involves
events (e.g., state change notification)
I n our xADL runtime, function calls can be
reified into objects that can be operated
on (Le., enabling factor)

External factors
+ JPL-Sun collaboration on Real-Time Java
+ RTS J specification involves several events

2

Applicability @ JPL

Thread scheduling (a la RTSJ)

H Mission Planning & Scheduling (MDS)

+ Scheduler posts "miss" and "overrun" events (RTSJ)
+ Thread state changes are event sources (MDS)

+ How should the system react t o events when it is

+ Low-level controllers & estimators must be

H Verification & Validation (w/ NASA Ames)

involved in other competing activities?

instrumented t o send events

+
+

Decouple verification & checking using
instrumentat ion
Livelock, deadlock are t w o sample problems solvable
with logs of lock/unlock events.

3

Scalability: Performance matters
but architecture knowledge is key

The performance syndrome
+ Events everywhere ...
+ ...p rogress nowhere!

H Strategy:
+ Optimize event communication

w Requires knowledge of the architecture

- A t runtime
Global vs. local knowledge => closed vs. open world

0 E.g., during architecture prescription
Eg., during software reconf iguration

A t design time
Eg., state machine code generation
Eg., model-based software transformation

4

I raining

Traditional "flight software" a t JPL
+ A bi t of magic, a l o t o f wisdom
+ A l o t of experience & attention t o detail
+ A l o t of confidence, creativity and testing
+ => Very difficult t o teach how t o do it

MDS approach: Architecture hoisting
+ Focus on the t w o architectures

+ Code is synthesized from the architecture

+ Need: architecture transformation culture

State analysis (states, controllers, estimators, sensors, ...) - Software architecture (components, connectors, ...)

- With the right QoS properties built-in

- Traditional code generators make homomorphic transformations
5

Technology: Transforrnhg
Architectures into Code

Taxonomy of connectors

Architecture-based transformation
+ Many dimensions & attributes => many implementations

+ Quality of Service properties may be:
w Enforced by design (no runtime overhead)
w Actively monitored (needs reif ication)

+ Transform the architecture into the software that is
engineered t o make the selected trades

+ Paradigm shift from
w software-centric

0 people writing lots & lots of code
w arc hitecture-cent r ic engineering

0 people writing architectures & transforming them into code

6

