

MISSION DATA SYST

Historical Context

Until recently, JPL missions were one-of-a-kind, spaced many years apart
Each mission team developed flight software independently
with minimal inheritance

Mars Pathfinder-to-Deep Space 1 “reuse” may be first exception
However, no a priori provisions for reuse were made

Missions have been designed for human control from Earth
Large operations staff and budget
Intensive human planning & checking of spacecraft activities
Big gap between what operators want to say and what they have to say

Flight software has used relatively simple time-based sequencing
Complicated sequence planning done on Earth, then uplinked
Lack of system-level reactive behaviors prevent full use of available resources

Very little autonomy except for fault protection and a few “critical

Examples: Mars entry-descent-landing, Jupiter orbit insertion
Always a huge design effort, and typically done late in a project

sequences”

There is a big gap between systems engineering and software engineering

911 812001 RR-2

MISSION DATA SYS

Pressures for Change

New era of frequent launches
Low-cost missions cannot afford to start from scratch
Institution cannot afford costly point solutions
or sub-optimal use of software engineers
Risks from low reuse are higher than necessary

More in situ operations in uncertain environments
Rovers on Mars, landers on comets, aerobots in Titan’s
atmosphere, hydrobots in Europa’s ocean, . . .
Science goals depend more and more on autonomous operation

More constrained communication with Earth demands more
on board decision-making

5 W radiated power)

Mars)

Longer round-trip light time delays (-10 hours at Pluto)
Lower data rates (-300 bps at Pluto with 2 m antenna,

Limited viewing opportunities from landers (a few hours a day on

Specter of mission-ending failures due to errors in software
Ariane 5, Clementine, Mars Polar Lander, ...

9/18/2001 RR-3

MISSION DATA SYST

The MDS Vision

911 812001 RR-4

MISSION DATA SYST

This Presentation

Summarize the key themes that have guided MDS
develop men t

Describe two dominant architectures that shape the
rest of MDS

* Establish a context for several of the detailed
architectural features to be described later in the review

Introduce the software organization that ties all of these
pieces together

Suggest how this helps us better relate software to
systems engineering

911 8/2001 RR-5

S

0

a

I

I

.-

O
F

c

5 0

E

a,
cn
>.r
cn
a,
S

0

cn
m

';cT

a,
a,
S

ET,
S

a,
a,
9

cn

.c.r

2
.- 1

c
-r

z E cn
S

1
c
-r

a,
a,
cn
a,
a

S

m S

3

0

C
l-
c

cn

_
.

1
c
-r

C
I

a
-

rs,

ii .-
a,
0")
a
9

.c
I
0

c

0

U

a,
c

E

0'

0

Is,
0

.- -
 S

0

m S

.- .c.,
.- E 5
c
i

a,
U

a,
m cn
Q

,

(u

a,
a,
cn

.c.r
c
i

1
c
-r

E

U

c

m =h
+
-,

.-

L
-

m m
-0

0

a,
cn
0

I:

.c.r

4
-

+

E

2 2 E! Y
-

o
)

3

0

cn
a

S

m cn
a,
3

U

S

1
c
-r

.c.r

.
I

1
c
-r

c
i

E a, a m S

m m
7
3

a,

m Q

a,
a

c
i

.c.r
E

0

0

MISSION DATA SYST

Themes

Emphasize Operability

Be explicit
System state and models form the foundation for monitoring and control

* Express domain knowledge explicitly in models
rather than implicitly in program logic
Operate missions via specifications of desired state
rather than sequences of actions
State determination must be honest about the evidence;
state estimates are not facts

Close the loop
Design for real-time reaction to changes in state
rather than for open-loop commands or earth-in-the-loop control
Resource usage must be authorized and monitored by a resource
manager

911 812001 RR-8

Themes

Think Ahead

MISSION DATA SYST

e Enable migration of capability from ground to flight, when appropriate,
to simplify operations

Design interfaces to accommodate foreseeable advances in
technology

9/18/2001 RR-9

MISSION DATA SYST

Managing Interactions

“A unified approach to managing interactions is essential”
Interactions make software difficult

Elements that work separately often fail to work together
The combinatorics of interaction is staggering, so it’s not easy to get right
This is a major source of unreliability

There are two approaches to this in MDS:

911 812001 RR-10

.
MISSION DATA SYST

State-Based Architecture

9/18/2001 RR-12

MISSION DATA SYST

State is Central

A system comprises project assets in the context
of some external environment that influences them

to meet operators’ intents
The function of mission software is to monitor and control a system

MDS manages all essential aspects of this function via state
Knowledge of the system, including its environment,
is represented over time in state variables
The behavior of the system is represented
by models of this state
Interaction with the system is achieved
via modeled relationships between state
and interface data (measurements
and commands), as mediated
by hardware proxies
Information is reported, stored, and
transported as histories of state,
measurements, and commands
Operators’ intent, including flight rules
and constraints, are expressed as goals
on system states A

9/18/2001 RR-13

MISSION DATA SYST

State Knowledge

Everything You Need to Know

@ Dynamics

Environment

Device status

Parameters

Vehicle position & attitude, gimbal angles, wheel rotation, ...

* Ephemeris, light level, atmospheric profiles, terrain, . . .

Configuration, temperature, operating modes, failure modes, . . .

Mass properties, scale factors, biases, alignments, noise levels, . . .
Resources

Data product collections

DM/DT Policies

Externally controlled factors

... and so on

Power & energy, propellant, data storage, bandwidt

Science data, measurement sets, ...

Compressionldeletion, transport priority, . . .

Space link schedule & configuration, .

RR-15

... and so on

9/18/2001 RR-15

MISSION DATA SYST

State Determination

Making Sense of the World

One can act only on one’s knowledge of the system
Knowledge is what you know, not how you know it
Observations (e.g., measurements) are not knowledge

Estimators find “good” explanations for observations and other
evidence, given a model of how things work

Knowledge may be propagated into the future, given models and plans

All knowledge is uncertain
Judgment must be based both on what is
and on how well it is known

However, one can achieve
local consistency of knowledge

known,

911 812001 RR-16

MISSION DATA SYST

State Control

Closing the Loop

911 812001

* Operators express their intent in the form of goals
Goals declare what should happen, not how
Goals may be expressed at any level

Elaboration may be conditional, in order to react to present circumstances
Coordination of activities is accomplished by scheduling

Conflicts are resolved, with priority as final arbiter
* Knowledge of all states is maintained, as required to achieve goals

* Knowledge is compared to goal constraints to test for compliance
Corrective action is applied, as required to achieve

High level goals are elaborated recursively into lower level goals

Alternate methods of achievement
may be applied at any level
Unachievable goals (and their elaborations)
are dropped individually without sacrificing others

* Supports fault tolerance,
critical activities, in situ autonomy,
opportunistic science, and more

RR-17

MISSION DATA SYST

Models

Tying It All Together

Relationships among states

Relationships between measurement values and states

Relationships between command values and states

Sequential state machines

Dynamical state models

Inference rules

Power varies with solar incidence angle, temperature, and occultation

Temperature data depends on temperafure, but also on calibration
parameters and transducer health

It can take up to half a second from commanding a switch to full on

Some sequences of valve operations are okay; others are not

Accelerating to a fum rate takes time

If there has been no communication from the ground
in a week, assume something in the uplink has failed

Pointing performance can'f be maintained
until rates are low

Reaction wheel momentum cannot be
dumped while being used for control

Conditional behaviors

Compatibility rules

... and so on

911 812001 RR-18

MISSION DATA SYST

Hardware Proxies

Connecting With the World

Provide local software representatives of system hardware
Delineating the abstract model of the system (including time!)
Translating raw inputloutput data into abstract declarations about state

Measurement models relate incoming data to state
Command models do the same for outgoing data

* Augments system hardware with supplemental behaviors
Sampling I/O sequencing and synchronization
Time and metadata tagging Data buffering and routing
Data format translation Error checking
Local tight control loops Data preprocessing
Data compression Etc.

Isolates state frameworks from
platform specific interfaces

Built on ACE middleware
Real, simulated, or abstract hardware
Real or virtual time

911 812001 RR-19

MISSION DATA SYST

State Timelines

State timelines maintain the value or set of possible values
(e.g., a range) of a state variable as a function of time
They capture both knowledge and intent about state

t

9/18/2001

Time

RR-20

MISSION DATA SYST

State Knowledge

* Knowledge of the system is expressed by generating state functions
Each spans an interval of time

Intervals spanning past times express experience
Intervals spanning future times express expectations

The state’s value is assumed to be somewhere within this uncertainty

Expressed values can vary over the interval

Each bounds the possible values of a state variable over its time interval

* Each state timeline is covered by a contiguous series
of state functions for all time

Newly created state functions overlay or replace older ones
Estimators produce new state functions which improve old knowledge
Other mechanisms produce newer state functions which compress or
summarize older knowledge

9/18/2001 RR-21

State Intent

MISSION DATA SYST

Control is exercised over the system by imposing ...
Constraints on states, which limit the range of a state variable

Constraints on time, which limit the duration between two time points
State is allowed flexibility within these bounds

Time points are variable points in time
These times are allowed flexibility, but again, with constraints

* A state constraint between two time points is called a goal

A time constraint between two time points is called a temporal
constraint

Goals and temporal constraints are expressions of intent

Success in constraint achievement is an objective matter
Criteria are explicitly expressed in constraint evaluation code
Directly verifiable during test, since constraints are explicitly evaluated

911 812001 RR-22

MISSION DATA SYST

Constraint Networks

* Goals and temporal constraints each connect a pair of time points
Goal Temporal Constraint

[min’, max’] ---------------

e Time points are often shared (e.g., one beginning as another ends)

A collection of connected goals and temporal constraints
form a constraint network

I
I
I
I

I
I

I
0

911 8/2001 RR-23

MISSION DATA SYST

Resolving Conflicts

* Example: three goals on the same state

Goal 1

Goal 2

Goal 3

The constraint
The time interval W

Crosshatched areas are
outside goal constraints

I

Goals 7 and 2 overlap, so
they’re compatible, as is

Goal 3 is incompatible with Goal 2,
but if can wait

9/18/2001

Timer

RR-24

MISSION DATA SYST

Timeline Execution

Goals are accepted if successfully placed on the timeline
for the goal state variable
Goals are frozen and acted upon when they appear on the timeline
in the immediate future
Goals are acted upon by achievers assigned to each state variable
Elaborators monitor execution and adapt plans, as necessary

Intent

... given the
present goals ...

... and given the
present state, ...

. . . achieve the goals.

Knowledge

Time
9/18/2001 RR-25

MISSION DATA SYST

Putting It Together

Elaborators, scheduling, . . .
Goal/event-driven
Planning and constraint solving
Analogous to sequencing, mode
and configuration control, fault
responses

I 4
I

Elaborators

I I I

Achievers, DM/DT,
Provide system behaviors
Managed via goals and temporal constraints
Fairly conventional real-time monitoring and control processes

9/18/2001 RR-26

MISSION DATA SYST

Allocation Goals

“Normal” constraint goals confine a state within some range
They limit states whose effects on others must be controlled
They merge via their intersection

Allocation goals set limits on how tight normal constraints can be
They indicate which effects on states by others must be allowed
They merge via their union

Both types of goals have been rigorously captured within a common
theory

The complementary declarations of intent and indulgence that
constraint and allocation goals provide are highly expressive
Allocation goals provide the means to ...

Manage resources and coordinate their use
Express and accommodate changing error budgets
Make allowances for uncertainty
Address conflicting side effects of otherwise disparate activities
Delegate control authority

9/18/2001 RR-27

Delegation

MISSION DATA SYST

Delegation temporarily moves the locus of goal achievement from
nominally assigned achievers to others

Addresses various problematic situations
Accommodation of real time limitations in goal elaboration and scheduling
Reflexive response to emergency situations
Consolidation of authority, when coordinated control is required
Direct, but protected, access by test operators to low level control functions
Additional implementation flexibility

Not always necessary to express complex or precise details
in the constraint network

Yet does so completely under the cognizance of the constraint
network with its associated rules

Enabled by the existence of allocation goals as equal participants in
the constraint network

911 812001 RR-28

Events

MISSION DATA SYST

For controllable states.. .
Choices made by achievers may be arbitrary within the confines of goals
and temporal constraints
Particular states and times within constraints are selected by the system

For uncontrollable states. I

Constraint satisfaction occurs at the impetus of external forces
Particular states and times at which constraints are met cannot be selected
by the system

constraint network
However, goals constraining uncontrollable states may appear in a

In this case, they act as event definitions
0 By becoming true (e.g., altitude is less than 10 km) and triggering time

points
Or becoming false (e.g., a device is no longer healthy) and triggering goal
failures

System behaviors can be tied to these events

911 812001 RR-29

,

MISSION DATA SYST

Value Histories

* A container mechanism supporting functions that produce values over

Encapsulate the interface to data management persistent storage
time (state variable timelines, measurements, commands, . . .)

and data transport
Stored and transported as data products
Selected data products are preserved across resets

Leverage the use of models to preserve continuous information

* Can also simply store a set of discrete value instances
using less storage space

Controlled by storage and transport policies New Entries

v Entries are combined and compressed as they age and are eventually deleted

9/18/2001 RR-30

MISSION DATA SYST

Com ponent-Based Architecture

9/18/2001 RR-32

MISSION DATA SYST

Components are Fundamental

* The Component Architecture establishes the elements

Components and their connections embody.. .
of software design and their coherent integration

The elements of functionality
Their types and registered instances within a deployment
Their interfaces and distribution across platforms
Their coordinated execution and synchronization

Software organization is established independently and systematically
It can be manipulated directly - including at run time, if necessary
Complexity becomes a manageable entity

These issues are raised to the level of symbolic realization

The State Architecture establishes the elements of functionality

E.g., state variables, achievers, hardware proxies, and so on
and their functional relationships

It does not establish the software design

911 8/2001 RR-33

MISSION DATA SYST

Connection Rules

Functional elements of the State Architecture
are structural elements in the Component Architecture

State variables, achievers, hardware proxies, and so on, are Components

State Architecture elements all interrelate in a few formally
established patterns

E.g., measurements are used only by estimators,
goals are directed to state variables,
only controllers issue commands,
only estimators update state knowledge,
and so on

* These are rules on connections within the Component Architecture of the
design

The Component Architecture implements and enforces these patterns
Compliance is inspectable
Exceptions must be overtly managed - nothing is hidden

911 812001 RR-34

I

Deployments

A deployment is an executable product
Each project will have several deployments
E.g., the flight software, the simulation software during
test, parts of the ground software, and so on

Each deployment is constructed from components,
connected as appropriate for that application

Not every component belongs in every deployment
E.g., attitude is usually estimated only on board
while trajectory is usually estimated only on the

Deployments may be interconnected

For remote links, deployments communicate
via component proxies

Exchanges between a component and its proxy
are managed by data transport services

C

*ound
0

:omponents

A-
e--. \

\
I
\

9/18/2001 RR-35

MISSION DATA SYST

For example. . .
Ground-Flight * Knowledge Exchange

State knowledge is needed

Common representation
Coordinated, consolidated

in both places

& maintained, as appropriate

* Information is exchanged
via state variable proxies

Original source in one deployment
Copied (at some level) to a proxy
in the other

Ground-based state determination is.. .
Typically for things like orbit determination, calibration, . . .
Up-linked as necessary (trajectories, parameters, . . .)

Typically for things like attitude determination, device states, faults, . . .
Down-linked as available (part of telemetry)

Flight-based state determination is.. .

911 8/2001 RR-36

MISSION DATA SYST Functional Partitioning
Across Deployments

There are similar stories of data exchange for goals, measurements,
science data, and so on

The architecture will suppo rt...
Knowledge sharing across multiple deployments

* Coordinated agents exchanging goals as peers

Where latency is not an issue ...
Measurements in one deployment may be sent to estimators in another
Controllers in one deployment may send commands to hardware proxies in
another
Goals may be elaborated part way in one deployment, and completed in
another

911 8/2001 RR-37

.
MISSION DATA SYS

The Whole Picture

MDS Framework

The State and Component Architectures are defined within a set of

Frameworks are the elements of a partially complete application
The MDS framework is organized in a hierarchy of dozens of packages
Each project adapts the framework by extending it in mission-specific
ways

classes called the MDS Framework

9/18/2001 RR-38

MISSION DATA SYST

The MDS Common Model

a The MDS Framework is the collection of most
core classes within the MDS architecture

Developed and maintained exclusively by MDS
* Uniform (except for versioning) across MDS

adaptations
. Each project does an Adaptation of the
e
m * framework

Captures project requirements and scenarios
0 Extends framework classes to address

functions and configurations specific to the
I c project

. Reusable extensions are generalized (if
n
. . . necessary) and moved to the framework .

a Several Deployments of the adaptation are
defined

These are the executable configurations to be
used in various settings (test beds, flight,
ground, etc.)

911 812001 RR-39

MISSION DATA SYST

Reuse Among Projects

c. Each project uses the same

... Adaptation €3

framework, except that later projects
will adapt later versions

Can continue to track framework
evolution up to some freeze point
Updates to frozen version are
confined to that project

Though mainline framework
development may decide to make
some of the same updates

Projects can adapt from one another
-then-freeze config-

ion management process would

911 812001 RR4O

MISSION DATA SYST

The Framework

Disciplines extend and customize
the core infrastructure*

Partitioned as peers for modularity,
acknowledgement of discipline
vagaries, and the ability to aggregate
functionality across disciplines as
necessary

Infrastructure *
All of the classes embodying core,
generic features, concepts, and
services
Includes essential features of the
State and Component architectures
Internally layered (hierarchical) to
maximize reuse and uniformity, and
to build more complex structure in
manageable steps

9/18/2001 R R 4 1

MISSION DATA SYST

Systems Engineering

e Systems and software engineering need to complement one another
Systems engineering must define the system and behavior
Software must understand the system and guide its behavior

State Analysis is a model-based process defined by MDS to aid
systems and software engineering

State analysis prompts comparatively methodical and rigorous analyses of
systems
MDS permits the uniform expression of systems engineering concepts
in software architectural terms
Due to the alignment of State and Component architectures, both
functionality and software design are considered simultaneously
Resulting products map directly onto the MDS architectural elements
Most MDS adaptation requirements can be defined by state analysis

State and Component architecture specifications
are supported by tools, which will ultimately evolve
into a unified code generation system for MDS

911 812001 RR-42

Summarv

MISSION DATA SYST

MDS addresses ...
Architectures for both functional and software design interactions
Unification and reuse across deployments and projects
A wide range of technical issues from autonomy to data management
The collaboration of systems and software engineering
Processes, tools, and design rigor up to the challenge of a flight program

State and Component Architectures are the bedrock of our approach
Each exploits a relatively small but powerful set of ideas
The two architectures complement one another in a natural but far-
reaching manner

9/18/2001 RR-43

