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ABSTRACT 
The astrometric performance of the Space Interferometry Mission (SIM) relies on precise measurements 
of the optical pathlength difference of the starlight through the arms of the interferometers that comprise 
the SIM instrument, and on precise relative distance between a set of fiducials that define the baselines 
of the interferometers. The accuracy of these measurements can be affected by various phenomena. Some 
of them are time-dependent (e.g., time-varying temperatures of components), while others are relatively 
static and repeatable (e.g., diffraction and polarization effects due to controlled translations and rotations 
of components). In this work we are concerned with the instrument errors of the latter type and in 
their compensation. In particular, a procedure for on-orbit calibration of the instrument error function is 
defined, and a proof of concept of its viability is presented. On a given grid of stars, the proposed procedure 
generates approximations of the gradient of the instrument error function at  a discrete set of field points 
corresponding to the star locations via a specialized set of maneuvers of the spacecraft. These gradient 
approximations are then used to estimate the error function via a least squares procedure in a manner that 
is very analogous to the wavefront reconstruction problem in adaptive optics systems. An error analysis of 
the procedure is presented providing further insights into the connections between instrument errors and 
the grid reduction solution. Finally, numerical results are presented on a randomly generated grid of stars 
that demonstrate the feasibility of the method. 
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1. INTRODUCTION 
The Space Interferometry Mission (SIM) derives its performance from precise (relative) distance measure- 
ments made between a set of fiducials. The accuracy of these measurements can degrade from a number of 
reasons. Some of them are time-dependent (e.g., time-varying temperatures of various components), while 
others are relatively static and repeatable (e.g., diffraction effects due to delay-line motion, polarization 
effects due to cornercube rotations etc). In this memo we are concerned with the errors of the latter type, 
that is, errors that can essentially be parameterized by the position of an object in the instrument’s field 
of regard. 
The magnitude of these errors can be very large, up to 20 nm over the field of regard for the science 
interferometer. On the other hand, the measurements of the instrument must be accurate to a level of 
approximately 0.5 nm. Consequently, highly accurate calibration procedures for the instrument’s delay 
measurements are necessary. Fortunately, these error sources have to be calibrated for the science inter- 
ferometer only and not for the guide interferometers, since over an observation period the positions of the 
guide stars are stationary with respect to the field of regard. The calibration procedure must satisfy tight 
accuracy requirements as well as duration requirements. Since calibration will be performed on orbit, it is 
desirable to be completed as quickly as possible in order to maximize the time that is available for science 
measurements, and to minimize errors due to timevarying effects. 



In this memo, a procedure for “external” calibration is presented. By “external” we mean that the instru- 
ment is calibrated using inertial sources. The basic measurement of the instrument is the delay measure- 
ment, d, given by 

where < ., . > denotes the usual Euclidian inner product of two vectors in E 3 ,  s is a science star vector, b 
is the baseline vector of the interferometer, and c(s, b) is the calibration function. 
The objective of this work is to calculate c. If the vectors b and s were known precisely, then a single 
measurement of the instrument would suffice to compute the value of c at the field location directly from 
(1). This computation would be subject only to the measurement (shot) noise of the instrument. However, 
neither b nor s are known precisely. For example, the star positions, s, may be known only to several 
mas,  while the error in the measurement of the baseline length, Ibl can be on the order of a few pm. The 
combined effect of the uncertainties in d, s, and b is such that direct use of (1) for the calculation of the 
calibration function c results in errors that are orders of magnitude greater than the required precision, 
[3]. It is, therefore, required to explore other methodologies for external calibration of the interferometer. 

Although c is practically unobservable by direct examination of ( I ) ,  it turns out that more success can be 
achieved by approximating the gradient of c, Vc. This is accomplished by canting and rolling the instrument 
by small angles and taking difference measurements. This approach exploits the inherent strengths of the 
instrument to make precise differential delay measurements. Vc can thus be computed at any field location 
occupied by a bright enough star. From these gradients the calibration function is then estimated using a 
least squares inversion, in a manner very much analogous to wavefront reconstruction methods in adaptive 
optics. 
The error analysis presented here is slightly complicated. We first characterize the “random” noise effects 
of delay measurement error and star position error. This analysis is relatively straightforward, and the 
errors are shown to be quite benign. Star position errors of 2-3mas are very tolerable. We also consider 
the possibility that the star position errors are correlated. This correlation is to be expected if SIM has to 
“self-start” as a result of not having first performed a dedicated survey of a patch of sky on which to do 
calibration (e.g., if there is no reliance on precurson mission or a ground survey). Numerical simulations 
indicate that there is very little degradation in this “self-start” scenario. 

Another source of error is the discretization error due to the approximation of Vc by finite differences 
developed from delay measurements, and the subsequent reconstruction of c on the finite grid of stars. 
Relationships between the number of calibration stars, cant/roll angle, measurement noise, and discretiza- 
tion error in the calibration function are developed. The important result here is that noise propagation 
is reduced by larger cant/roll angles and more calibration stars; however this has to balanced against 
increasing the discretization error and time required for performing the calibration. The correct balance 
is strongly dependent on the nature of the calibration function itself, and as (if) external calibration pro- 
ceeds, characterizing the calibration function in a manner to make this determination will be an on-going 
investigation in the testbeds. (Some ideas on this process are also included.) 
The remaining source of error considered in this memo is due to inaccurate knowledge of the baseline 
vector. An analysis of the least squares solution reveals that the major resulting error in the estimation 
of the calibration function is essentially linear across the field. This is signficant because a linear error in 
the calibration function is indistinguishable from a change in the baseline vector, and consequently has 
no impact on the determination of the astrometric parameters of the stars. This notion that linear errors 
across the field are inconsequential to performing astrometry is a potential linchpin idea that will probably 
be exploited in many ways. 

d = < s, b > +c(s, b) , (1) 



The following sections contain the details of the calibration scheme along with the derivation of specific 
formulae and bounds for the effects of the various error sources. Numerical results that demonstrate the 
efficacy of the method are also included. 

2. ON-ORBIT CALIBRATION SCHEME 
The proposed method for such a task relies on setting up a grid of stars and canting and rolling of the 
intrument by small angles (at the order of 1”) and use of (1) to obtain estimates of the spatial derivatives of 
c at the grid points. Setting these estimates equal to the corresponding finite-difference approximations of 
the spatial derivatives of c results in an overdetermined linear system that can be solved in a least-squares 
sense to compute the values of c at the grid points. Once this is achieved, the value of c at any other point 
inside the grid can be computed by means of two-dimensional interpolation. 
To fix ideas, let D denote a region in the u - w plane containing the origin. A point in D is denoted by 
z = (u ,v) .  Further, let S denote the unit sphere, and define the mapping s : D + S by 

s(u,  w )  = (u ,v ,  y(u, u ) ) ,  y(u, w )  = J1 - (u2 + u 2 ) .  (2) 
In other words, s provides a parametrization of the instrument’s field of regard. A typical size of a circular 
field of regard is 15”, for which we have u2 + w 2  5 ( 7 . 5 ~ / 1 8 0 ) ~ .  According to this parametrization, the 
center of the field of regard is (0, 0 , l ) .  The proposed calibration scheme consists of the following steps. 

Step 1. Select a coordinate system so that the baseline vector b is colinear to (1,0,0). Then, select a grid 
Gs E S consisting of N x N stars in the field of regard, Gs = { s ( i , j )  = (u(z,j),~(i,j),~(z,j)), i , j  = 
1,. . . , N}. The vector array s is assumed to be known a priori from star catalogues within some (known) 
error bounds. i , j  = 
1,. . . , N} E D which corresponds to the grid of stars Gs. It is desirable to have as many grid stars as 
possible, which menas that for accuracy purposes N must be as large as possible. However, the larger N 
gets, the slower the calibration procedure becomes (mission requirements state that the duration of the 
procedure cannot exceed a few hours). Further, there is a limit on the amount of “suitable” stars (in terms 
of, say, luminosity or relative distance) in any given field of regard. Because of these considerations, the 
range of N is restricted to 10 < N < 20. 

Further, the mapping s given by (2) defines a grid of points Go  = {z(z, j ) ,  

Step 2. Rotate the instrument baseline -a and a degrees about the w- axis (cant). The rotation matrices 
are given by 

cosa 0 ~ s i n a  
R: = (3) 

respectively. Make delay measurements d: ( i , j )  and d ; ( i , j ) ,  i , j  = l , . .  . , N ,  at the grid points, respec- 
tively. Then, application of (1) yields the relationship between the delays and the values of the calibration 
function at  the “rotated” grid points (ti*, v): 

(4) 
d ? ( i , j )  = < S(Z,j) ,R$b > +c (u f . ’  ( Z , J ) , V ( i , j ) )  i , j  = 1,. . . , N ,  

where 
u f ( i , j )  = u( i , j )  fa. ( 5 )  

Step 3. Rotate the instrument baseline p and -p degrees about the u- axis (roll). The rotation matrices 
are given by 

(6) 
0 f s i n p  cosp O I  

1 0  
o cosp F s i n p  , 



respectively. Make measurements d:( i , j )  and d ; ( i , j ) ,  i , j  = 1, .  . . , N, at the grid points, respectively. As 
before, relation (1) yields, 

(7) f ' .  d: ( i , j )  = < s ( i , j ) ,  R:b > +c (u(i,j),v ( 2 , J ) )  i , j  = 1,. . . ' N ,  

where 
V * ( i , j )  = v(2 , j )  &/3. 

Step 4. Calculate approximations of the gradient of c at the grid points 

dc(i, j )  dc(2, j )  
Vc(2,j) = [- du ' -1 av , (9) 

based on the measurements that were taken during the rotations of Steps 2 and 3. In particular, the 
following approximations hold: 

1 
- N  a c ( i 7 j )  - - [c (u+(i,j),v(i,j)) - c (u-(i,j),v(i,j))] , 
dU 2a 

i , j  = 1 , . . ' ,  N ,  

dc(i  j )  1 2- - 2p [C(U(i,j),V+(Z,j)) -c(u(i,j),v-(i,j))] , i , j  = 1 ,..., N .  
dV 

In view of (4) and ( 6 ) ,  the above relations yield 

dc(i  j )  1 
2- - - [d : ( i , j )  - d i ( i , j )  - < s ( i , j ) ,  (R,+ - R,)b >] , i , j  = 1 , .  . . ,N, 

dU 2cY 

1 
[d,s(i,j) - &(Z,j) - < S ( i , j ) ,  (R,+ - R,)b >] , i , j  = 1,. . . , N .  w, - - -  

d V  - 20 (13) 

Step 5. Calculate the centered, finite-difference approximations of the gradient of c at the 'interior' grid 
points. The approximations satisfy the following relations: 

~ ( 2  + 1,j) - ~ ( i  - 1,j) P <  V ~ ( i , j ) , ~ ( i  + 1,j) - ~ ( i  - 1,j) >, i = 2,..,N - 1, j = 17..,N7 (14) 

~ ( 2 , j  + 1) - c(Z,j - 1) N < Vc(Z,j),z(Z,j + 1) - z ( i , j  - 1) >, i = 1 ,.., N, j = 2, . . , N  - 1. (15) 
For the grid points that lie on the boundary of the grid, one-sided differences are used: 

c ( 2 , j )  - c(1,j)  21 < Vc( l , j ) ,  z(2,j)  - Z(1 , j )  >, j = 1,. . . , N ,  (16) 

Step 6. Substitute (12)-(13) into the right-hand side of (14)-(19). The result is an overdetermined system 

A? = Z ,  (20) 



which is solved in the least-squares sense. In the above equation 2 is the N2-array whose elements are the 
values of the calibration function at the grid points, i .e, 

- . -21 21 0 . . .  0 0 0  
-I 0 I . . .  0 0 0 

. . .  . . .  A, = i . .  . .  : 7  

0 0 0 . . .  -I  0 I 
0 0 0 . . .  0 -21 2 1  - - 

(21) 
. .  q i  + ( j  - 1)N) = c( i , j )  . 2 , J  = 1,. . . .  N .  

- 
-2 2 0 ' . .  0 0 0  
-1 0 1 . . .  0 0 0  
. . . .  . .  . . .  . .  . .  . . . .  . . .  
0 0 0 . . .  -1 0 1 
0 0 0 . * .  0 -2 2 

Also, z is the 2 x N2-array that arises from substitution of the expression for the gradient of the calibration 
function c, relations (12) and (13), into the right-hand side of (14)-(19). In other words, z can be written 
as 

where z1 and 2'' are N2-arrays given by 

z I ( l +  ( j  - l )N) = < Vc( l , j ) ,  z(2,j) - z(1,j) >, 

z'(i+ ( j  - l )N) =<  Vc(Z,j), z(i+Z,j) - z ( i  - i , j )  >, 2 = 2 .... , N  - 1, } (23) 

z'(N + ( j  - 1)N) = < Vc(N,j) ,  z ( N , j )  - z ( N  - 1,j) >, 

j = 1,. . .  , N ,  and 

%"(i) = < Vc(2, l),  z(i,2) - z(i ,  1) >, 

zlI(i  + ( j  - 1)N) = < VC(Z,j), z( i , j  + 1) - z(2,j - 1) >, j = 2,. . .  , N  - 1, ] (24) 

z"(N(N - 1) + 2 )  = < Vc(2, N ) ,  z(i ,  N )  - z(i ,  N - 1) >, 

i = 1,. . . .  N, respectively. The gradients at the right-hand side of the above expressions are given by (12) 
and (13). 
Finally, A is a 2N2 x N 2  matrix and consists of the centered finite-difference operators in the u and 
directions (one-sided operators have been used on the boundary). In other words, A = [AU,AVIT, where 
A, and A, are given by 

A, = (25) . .  
0 0 . . .  

and 

B =  (27) 



The solution to equation (20) is given by 
E = A t . , ,  

where At is the pseudo-inverse of A. The computation of At is performed via the Singular Value De- 
composition (SVD). Once the values of the calibration function have been computed at the points of the 
grid stars, an interpolation scheme, e.g. linear or parabolic interpolation, can be employed to evaluate the 
calibration function at other points of the field of regard. 
It is worth mentioning that the continuous least-squares problem associated with (18) is to minimize the 
functional J :  ,- 

The solution to this problem solves the following boundary-value problem on D: 

V2c(u,w) - v .  y = 0 ,  (u,w) E D ,  (30) 

with Neumann boundary conditions 

Vnc(u, w) = yn , (u,w) E dD . 
In the above expressions y is a, presumably known, continuously differentiable function, satisfying y = 
( z ' , ~ ' ' )  at the grid star locations. This analogy xi11 come into play later, when errors due to unknown 
baseline orientation and length are analyzed. 

3. ERROR ESTIMATES 
The most important errors that enter the proposed calibration procedure the previous section are: i) 
baseline error, ii) star position error, and iii) measurement error (shot noise). Also, the truncation error 
of the finite-difference approximations of the derivatives of the calibration function and the error of the 
interpolation scheme for values of the calibration function between the grid stars must be added to these 
errors. 

3.1. Error due to baseline error 
The error in the estimate of the calibration function due to baseline error, eb, arises from inaccuracies in 
the knowledge of the baseline vector, b. Let us assume that the true baseline vector is given by b+bb with 

Sb = (Sb,, Sb,, Sb,) . (32) 

Then, according to (10)-(11), the error in the finite-difference approximation of the derivatives of the 
calibration function at the grid points is given by 

1 .  1 < s, (R,s - R,)Sb > -%(ySb, - uSb,) 

-L < s, (R: - RJSb > ] = [ -+)db, sinb - vbb,) [ 1; (33) 

To.get estimates on the baseline error, assume that we have a regular, orthogonal grid, and let h denote 
the distance between any two adjacent stars. Then, according to (14)-(18) and (20), the baseline error at  
the grid stars satisfies the following overdetermined system 

- Y ( y S b ,  - uSb,) 

- 7 (y Sb, - w Sb,) sin ,9 
A .  eb = 2h (34) 



The error eb can be split into 3 parts, each one being a function of the baseline-vector error in one coordinate 
only, Le.,  

eb = ebu(6bu) -I- ebu(6bu) 4- ebz(6bz).  (35) 

- -  Then, relation (33) implies that 

A . e b u  = -2h- sins 1 1 6bu,  
a 

The individual components of the error eb can be evaluated by solving the systems (34) through (36) in 
a least-squares sense, which amounts to multiplying both sides of these equations by At. Each of the 
components of 6b can be on the order of a micron. Therefore, the contribution of the baseline error to the 
calibration error is expected to be large. 

It is important, however, to compare these errors to astrometric errors produced by innaccurate baseline 
knowledge. These “astrometric” baseline errors are of the form 

where 6b’ = ( 6 b i ,  ab:, 6b:) is the error in the baseline vector during the astrometric mesuarements. In 
other words, the “astrometric” baseline error is linear with respect to the grid coordinates, and its gradient 
is equal to the error in the baseline vector. Correction for this error is provided by the grid reduction 
procedure, [ 11, [2]. 
This implies that if the calibration error due to baseline-related error is also a linear, or approximately 
linear, function of the grid ccordinates, then it becomes indistinguishable from the astrometric error and 
will be corrected during the grid reduction. Therefore, we are only concerned with the deviation of this 
error from a linear function. In order to get estimates for this deviation we proceed with the following 
analysis. 
Consider the first component of the baseline-related error in the calibration scheme, ebu. This is the 
component that is associated with the stretch error in the baseline. The continuous analog to relation (36) 
is 

(40) 
sin a 

V e b  = -- 6bu (y6bu, 0 ) .  
a 

By taking the divergence of this expression, we arrive at the following Poisson equation 

sin a 
V 2 e b  = -- 6bu v . (y6bu, 0 ) .  

a 

Employing the approximations s ina  2: a, and keeping the first two terms of the binomial expansion of y 
(Le . ,  y N 1 - (u2 + v 2 ) / 2 ) ,  the above equation can be simplified to 

V2ebu = u ~ b , ,  (u ,v )  E D .  (42)  



Dirichlet boundary data for this equation on a circular domain can be provided in the following manner. 
Now, consider a circle, TR, of radius R equal to half the field of regard, and a unit vector t tangent to the 
circle. Then, we have 

Veb, . t = - (1 - v) Sb, s ine ,  (u,w) E ~ T R ,  =+ 

+ V e b u . t  = - 6bu sin8, (u ,v )  E ~ T R ,  (43) 

where 8 is the polar coordinate, 8 = arctan(v/u). Integrating the above relation along the perimeter of 
the circle TR we obtain 

Let us now decompose the error component ebu into to a term that is linear in u and a remaining term, in 
other words 

ebu = a b u + P u >  (45) 
where ab is a proportionality constant. The objective of the analysis is to compute an upper bound for 
the magnitude of pu. According to this decomposition, the gradient of ebu is given as 

v e b u  = (ab, 0) -k V P u .  (46) 

Integrating this equation along the perimeter of the circle TR we obtain an equivalent expression to (43), 

ebu = R(cosO- l ) ab+  V p u . t R d q 5 ,  ( u , u ) E ~ T ~  + 

Comparing (43) and (45), we observe that we can set 

ab = Sb,. (48) 

It is also worth mentioning that approximately the same solution for ab is obtained by solving the dis- 
cretized version of (41), with respect to ebu and then passing a least-squares, linear fit through the solution. 
The discretized version of (41) is the overdetermined system (36) and has is solved in the least-squares 
sense. 
Additionally, by inserting the ansatz (44) into (41), and by comparing (43) and (46), we finally arrive at 
the following boundary value problem for pu on the circle TR, 

The solution to this problem can be written as a sum of two functions, 

I I I  
Pu = Pu + Pu 7 



where p i  is a nontrivial solution to the Poisson equation, and p:' is the solution to the Laplace equation 
with Dirichlet boundary data, i.e., 

V2p; = udb,, (u,  U )  E T r ,  (52 )  

and 

R3 
2 

pi1 = - p i ( u , v )  + (cos8 - 1)- Sb,, (u ,v )  E &!". 

A nontrivial solution to (51) is readily found to be 

(54) 

(55) 

(56) 

1 
Pu I - - - T ~ c o s O S ~ , ,  8 

which implies that 
I Jbu 

lPul I - R 3 .  8 
Subsequently, inserting (55) into the boundary condition (54) yields 

3 1 
pi' = (s cos 8 - - )R3 Sb, , 

2 
(u, v )  E ~ T R  . (57) 

An upper bound for Ipi'I is directly obtained by virtue of the maximum principle for the Laplace equation, 

(58) 

IPul I R3&. (59) 

IP, 11 I I p " b u .  7 

Combining relations (50), (55), and (57) we finally get 

This expression provides and upper bound for the deviation of the first component of the baseline error 
e(,, from a linear function. 
A similar result holds for the second component of the baseline error, ebv. The continuous analog of (37) is 

V2ebv = vSb ,  , (u , v )  E D .  (60) 
Setting ebv = vSb, + pv and performing the same analysis as above for pv, we find that the same upper 
bound holds for p,, i. e., 

lPvl I R3&. 

For the third component, ebz, we have the continuous analog to (38) 

Vebz  = -(u,  V )  Sb, , (u, V )  E D ,  
where the approximations for s ina  E Q and sin@ N @ have been employed. As usual, ebz is decomposed 
into a term which is linear with respect to y and a remainder, 

n n 

Taking the gradient of this expression and comparing it with (62) we arrive at 

V P Z  = 0 ,  (u ,v )  E D ,  (64) 
which means that pz is a constant function and, therefore, it can be solved as part of the grid reduction. 
This result, combined with (56) and (58) suggests that the deviation of the baseline error from a linear 
function of the form ubb, + vSb, + ySb, is bounded by the term R3(Sb,  + Sb,). 



3.2. Error due to measurement noise 
Let qui , and qv:, i = 1,. . . , N2, be the variables representing the noise in each delay measurement duf 
and du:, respectively, at the grid stars. Let us assume for simplicity that we have a regular grid. As before, 
let h denote the distance between any two adjacent stars. Noise enters (20) via 

f 

(65) 
h 

Ai3 = X +  - 7 ,  
cy 

where r )  = [ r )U , r )V]T ,  r) ,  and qV being random N2-vector with components qui and qVi, respectively. 
Further, we have E(qu:) = 2E([q,’I2) and E(qvz)  = 2E([qv;l2). Henceforth we will write a17 for the single 
measurement error, i .e.,  ~(7,:) = E(qv:) = 2 4 .  

Now let Y = ATA. Further, let X k ,  IC = 1, .  . . , N 2 ,  denote the eigenvalues of Y .  Then, the variance to the 
solution of (64) is related to the sum of the reciprocals of the nonzero eigenvalues, wiz 

Therefore, the rms error due to measurement noise is 

It is quite difficult to obtain an analytic expression for the sum of the eigenvalues that appears in the above 
relation. However, it can be shown that the eigenvalues of this matrix are larger than the expressions 4 - 
2 cos(.rri/N) -2 cos(.rrj/N), i, j = 1, .  . . , N .  The sum of the reciprocals of these expressions are O ( N 2  log N ) .  
Therefore, it is meaningful to try to approximate this sum by a function of the form aN2 log N ,  with a 
being a constant coefficient, for the sum of the reciprocals of the eigenvalues. One can indeed verify that 
for N in the range of interest, 8 <_ N 5 25, the following approximation holds 

which, in view of ( 6 6 ) ,  implies that the rms error due to measurement noise satisfies 

If h = a, then the rms error due to measurement noise will be smaller than the rms of the noise if N I: 20. 

Note also that noise propagation decreases linearly with the magnitude of the roll/cant angle and sublinearly 
with increasing the number of stars in the grid, since h 1/N. The problem with increasing the roll/cant 
angle is that a greater discretization error results. The diffuculty with increasing the number of stars in 
the grid is the time to perform the calibration (the required time is proportional to N 2 ) .  

3.3. Error due to star position error 
The motivation for performing the calibration procedure as differential measurements was to reduce the 
sensitivity to errors in the knowledge of star position. These are vectors of the form 



These errors enter (18) via 

(71) 
h Ai? = Z +  - q s ,  
a 

where qs is a 2N2-vector that represents the error in the difference operators of the calibration function 
due to the star position errors. According to (10) and (11) qs has the following form 

1 ,  rls = [ < ss, (R,+ - R,) b 
< 63,  (R: - R,) b 

which, in view of (3) and (5), becomes 

Here hUi and hvi, i = 1,. . . , N 2 ,  are zero-mean uncorrelated random variables with E(hu:) = E(h,:) = 
$/2, us being the rms position error of a grid star in one coordinate direction. 
Relation (69) implies that the star position errors have no effect at all to the approximations of the v- 
derivatives of the calibration function. Therefore, in order to get an estimate for the rms error due to star 
position error, let Y, = A:A,, and let A, denote the eigenvalues of Y,. The variance of the solution to 
(67) is related to the reciprocals of the non-zero eigenvalues, and an upper bound is given by 

(74) 
1 1 2 

2 (:h) x,li 21 (Nlblh2as)2 -. (21blhas sins)' 
E(lc - el2) < 

2a2 Auk 
&k#O Xuk#O 

From this expression, the following bound for the rms error due to star position error is derived: {v < l b l h 2 u s / z .  
xu k #o 

(75) 

As before, the sum appearing in the above relation can not be evaluated in closed form. However, it can 
be easily computed numerically. Furthermore, a good approximation for this sum is given by the following 
relationship 

1 1 - N - N 3  - 3 N .  
Auk 12 

x u  k #o 
It turns out that for N within the range of interest, 10 5 N 5 20, the rms error is much smaller than 
Ibl us. For example, if N = 16 and h = 1" (implying that the field of regard is 15O), then the rms error is 
smaller than 5% of Ibl us. 

3.4. On the truncation and interpolation errors 
The proposed calibration scheme is based on constructing centered-difference approximations of the first- 
order derivatives of the calibration function. It is well known from standard numerical analysis that, on a 
uniform grid, the higher-order term of the error, et of the approximation of the u-derivative is given by 

h2 a3c et = -- au3 + h.o.t., (77) 

where h is the distance between two adjacent grid points. A similar expression holds for the v-derivative. 



Interpolation of the calibration function at arbitrary points inside the field of regard introduces errors that 
can also be expressed in terms of the high-order derivatives of c. For example, for linear 1D interpolation 
along the u direction (interpolation along a line segment) the error is given by 

( h  - Au) Au d 2 c  
2 dU2 

- + h.o.t., ei = 

where Au < h is the distance between the point of interest and the location of the adjacent grid star from 
the left side. 
These results, however, do not  necessarily suggest that we have to be concerned with the high-order 
derivatives of the calibration function that we are trying to estimate. The reason is that our objective 
is not to determine the true calibration function c but an admissibEe calibration function, say E ,  which 
satisfies 

IIC - Ell00 5 e,  , (79) 
where 1 1  . llco denotes the maximum norm, and e,  is a small allowable tolerance, whos precise value is to 
be determined. For example, it is meaningless to set e,  to a value smaller than the size of the errors due 
to measurement noise. Any function E is admissible as long as it satisfies (79) which implies that it is 
sufficient to try to estimate E instead of c. The smoothness of E will be detrmined via testing, modeling, 
and analysis. The exact procedure for this has not yet been defined. 
If, for example, E is a third-order polynomial then the effects of the interpolation and trunction errors 
can be easily written in terms of the polynomial's coefficients. Indications on the form and smoothness of 
admissible calibration functions will be provided by ground experiments and computational modeling of 
the physical phenomena that are affect delay measurements, such as diffraction, polarization effects etc. 
The existing numerical evidence on the effects of these phenomena indicates that 3rd-order polynomials 
can indeed be admissible calibration functions. 

4. NUMERICAL RESULTS 
The proposed external calibration algorithm was tested on a series of numerical tests that are described 
below. We considered a grid of 16 x 16 stars, covering a 15" x 15" field of regard, i.e., N = 16 and 
h = 1". These are typical values, given the mission requirements for SIM and the 'density' of bright stars 
(magnitude 11 and above) at any portion of the sky. Actually, it is anticipated that N may be as low as 
10, but not higher than 20. 
It was assumed that the shot noise of the instrument follows a Gaussian distribution of zero mean and 
variance oV = 250 p m .  Further, it was assumed that the star position error is also a Gaussian distribution 
of zero mean and variance os = rads  N 2 x lop3 arcsec. To measure the effect of these random 
errors, approximately 20 Monte Carlo simulations were ran and the rms error in the calibration function 
was computed. The range of the rms error from each set of Monte Carlo simulations is given below. Finally, 
the baseline vector was assumed to be b = (10,0,0) m, while the error of the baseline vector was taken to 
be 1 p m  on each component. 
The "true" calibration function was derived from estimates of the polarization and diffraction effects on the 
metrology systems. It is a 2nd order polynomial on u and u plus a small-amplitude sinusoidal perturbation 
on each direction. A plot of this function along the v-axis is given below, Fig. 1. 
In the first test, a uniform grid was considered. Assuming zero errors from baseline, star position and 
measurement noise, the error on the estimation of the calibration function was 32pm. This error arises 
from the truncation of the derivatives and represents the lower bound of the overall error of the proposed 
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Figure 1. Top: plot of the “true” calibration function, c, along the v-axis. Bottom: Plot of the nonlinear 
part of c. 

scheme. When a lower resolution grid was employed, consisting of 11 x 11 stars, this error increased to 
139 p m .  

When we took into account the effect of measurement noise only and ran 20 Monte Carlo simulations, 
the rms error varied between 186 - 269 p m .  Similarly, when we examined the effect of the star-position 
error, the rms error on the calibration function varied between 132 - 228 p m .  Finally, when we considered 
the combined effect of shot noise, star-position and baseline-vector errors, the residual rms error in the 
calibration function lied between 249 - 401 p m .  This residual error does not include the linear part of 
the baseline-vector error because it can be evaluated as part of the grid reduction. Plots of the true and 
estimated calibration functions (for one particualr numerical test) are shown if Fig. 2. 
In the second test, we generated irregular grids by assuming randomly distributed stars across the field 
of regard, with a density of 8 stars per square degree (this is a realistic density value of stars that satisfy 
brightness and size requirements). During each numerical experiment, the stars that were closest to the 
grid points of the corresponding regular grid were selected as the grid stars. A plot of one grid realization 
is given in Fig. 3. As in the first test, sets of 20 Monte Carlo simulations were conducted to examine 
the effect of the various errors. For these simulations, random realizations for both the stochastic errors 
(star-position error and shot noise) and the star-grid were eployed. In the presence of discretization error 
only, the standard deviation of the error in the calibration function lied between 61 - 81 pm. In other 
words, there was an increase on the order of 30 - 50 p m  in the discretization error due to the irregularity of 
the grid. Assuming noise in the measurements (and absence of star-position and baseline errors), the rms 
calibration error was between 201 - 254 p m ,  which implies a 10 p m  increase from the regular-grid case. 
Similarly, assuming star position error (and absence of measurement noise and baseline errors), the rms. 
calibration error was found to be between 137 - 208 p m .  

When all posible errors were taken into account, the rms. error was between 260- 320 p m ,  Le. ,  at the same 
levels as in the first test. The plots of the true calibration function and the estimated one (for one particular 
numerical test) are shown in Fig. 4. The difference between the true values and the numerically computed 
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Figure 2. First test, regular grid. True and estimated calibration function, on a 15" x 15" field of regard. 
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Figure 3. Second test. Irregular grid of one Monte Carlo simulations. The stars were picked among 1800 
stars randomly distributed across the field of regard (star density, 8 stars per square angle. 

ones are shown in Fig. 5. As before, the linear part of the baseline-vector error has been subtracted from 
these results. A plot of the linear part correction is shown in Fig. 6. 
For the third test, the a grid based on the "self-start" scenario of SIM was constructed. In particular, we 
considered a 10 x 10 grid on a 15" field of regard with a priori star-position error of approximately 20 mas. 

Subsequently, new star positions were estimated via simulation of the measurement process of SIM. These 
simulations reduced the star-position error to approximately 2 m a s .  It should be noted, however, that 
since the new grid-star locations were computed by means of an estimation procedure, the errors are now 
correlated, in contrast to the previous two tests where the star-position errors were uncorrelated. The 
numerical results are summarized in the next paragraph. The numbers inside parentheses that follow the 
results below are the equivalent results for randomly generated 10 x 10 grids on 15" field of regard (in other 
words, for the results inside parentheses a new generalization for the star grid was used for each Monet 
Carlo simulation). 
The dicretization error was found to be 162 p m ,  (153 - 188 p m ) .  The rms error in the presence of 
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Figure 4. Second test, irregular grid. True and estimated calibration function, on a 15" x 15" field of 
regard. 
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Figure 5 .  Second test, irregular grid. Difference between true and estimated calibration function, Ac, 
across the 15" x 15" field of regard. 
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Figure 6. Second test, irregular grid. The linear part of the calibration-vector error. 
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Table 1. Summary of results of the 3 tests. 

This part will be 

measurement noise was 330 - 444 p m ,  (318 - 544 p m ) .  The rms error in the presence of star-position error 
was between 375 - 598 p m  (255 - 381 p m ) .  Finally, the combined effect of all errors generated rms errors of 
418 - 653 p m ,  (379 - 550 p m ) .  The overall errors from this “self-start” scenario are generally higher than 
those resulting from randomly generated grids because the individual error components become correlated. 

These results indicate that in order to keep the overall error below 0.5 nm, a resolution of 1 star per degree 
angle along each direction is necessary. It should be mentioned that these results could have been different 
if a different calibration function had been assumed. At the present time we do not know exactly the form 
of the calibration function that we should expect. However, as mentioned above, ground experimental 
data and numerical simulations will provide indications about the form of the function. Then it would be 
possible to derive firm resolution requirements and more accurate error bounds. The results of the tests 
that were carried taken during the present study are summarized in the following table. 

5 .  CONCLUDING REMARKS 
A procedure for external calibration of SIM was presented. The objective of external calibration is to 
determine a calibration function that corrects field dependent errors in the delay measurements made by 
the instrument. This procedure consists of the following steps. 



The first step is to set up a grid of stars within the instrument’s field of regard. Then, finite-difference 
approximations of the derivatives of the calibration function are constructed from direct measurements 
on the grid stars by rotating the baseline of the instrument. This procedure results in an overdetermined 
linear system with respect to the values of the calibration function at  the field points corresponding to 
the grid star locations. This system is then solved in the least-squares sense. Interpolation between the 
computed values produce values of the calibration function at any point within the field of regard. 
Analytic or semi-analytic bounds for the errors generated by the proposed procedure have been derived. 
These bounds indicate that, given the various design parameters of SIM, the procedure has the potential of 
being sufficiently accurate and robust. The timescale for implementing the calibration procedure appears 
to be within reasonable bounds for wide angle mission requirements. 
The efficacy of the procedure was demonstrated through a series of tests. In particular the effect of each 
error was studied through Monte-Carlo simulations. The discretization error was found to be on the order 
of 50 pm for sufficiently dense girds (approximately 15 x 15 stars), while measurement noise contributes 
rms errors on the order of 250 pm. Seperately, the star-position error, created rms errors of approximately 
150 pm. When all errors were taken into account, it was found that it is possible to expect rms errors 
around or below 0,5 nm. This implies that the analytically derived error bounds are conservative with 
respect to the numerical results. Near term work will focus on meshing the procedure and error analysis 
with testbed and modeling developments and requirements. 
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