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Large Eddy simulation (LES) models are presented and evaluated on a database ob- 

tained from Direct Numerical Simulation (DNS) of a three-dimensional temporal mixing 

layer with evaporating drops. The gas-phase equations are written in an Eulerian frame 

for two perfect gas species (carrier gas and vapor emanating from the drops), while the 

liquid-phase equations are written in a Lagrangian frame. The DNS database (described 

and analyzed in Part I) consists of transitional states attained by layers with different 

initial Reynolds numbers and initial liquid-phase mass loadings. The LES models eval- 

uated at these transitional states are of two types: those for the filtered source terms 

representing the effect of the drops on the filtered flow field, and those for the subgrid 

scale (SGS) fluxes arising from filtering the convective terms in the DNS equations. The 

filtered source term models are applicable to LES in which the grid is coarser than the 

DNS grid and, consistently, the DNS physical drops are represented by fewer drops, called 

‘computational’ drops in the LES context. Because the unfiltered flow field is required for 

the calculation of dropbased quantities that enter the computation of the source terms, 
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but this unfiltered flow field would not be available in LES, various approximations were 

attempted for it, namely, the filtered flow field and the filtered flow field augmented by 

corrections based on the SGS variances. All of the filtered source term models were found 

to overestimate filtered source terms, with the relative error of modeling the unfiltered 

flow field compared to the error of using computational drops showing a complex depen- 

dence on filter width and number of computational drops. For modeling the SGS fluxes, 

constant-coefficient Smagorinsky, Gradient and Scale-Similarity models were assessed 

and calibrated on the DNS database, with the Gradient and Scale-Similarity models 

showing excellent correlation with the SGS quantities they are used to replicate. An a 

posteriori study is proposed to evaluate the impact of the studied models on the flow 

field development, so as to definitively assess their suitability for LES with evaporating 

drops. 

1. Introduction 

The Large Eddy Simulation (LES) methodology was conceived for single-phase (SP) 

flows to decrease computational costs through restricting the resolution to that of the 

large scales and including the effect of the small scales through models. The LES equations 

are obtained by spatially filtering the Direct Numerical Simulation (DNS) equation set, 

as DNS are simulations which compute the entire range of scales typical of turbulent 

flows. For compressible multi-species flows, this filtering process introduces unresolved 

momentum, energy and species subgrid scale (SGS) fluxes. (For incompressible SP LES, 

only the momentum SGS fluxes, usually referred to as SGS stresses, arise.) Therefore, 

for SP flows, the necessary SGS models consist of expressions relating the SGS fluxes 

to the resolved variables. For two-phase (TP) flows with evaporating (liquid) drops, the 
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situation is more complicated because the filter volume contains drops. Assuming that 

the drops are small enough to be treated as point sources, their evolution depends on the 

gas-phase flow field, and in turn they affect the gas phase by acting as sources of mass, 

momentum and energy. Consistency in the goal of decreasing computational costs dictates 

that not only must the flow resolution be decreased in LES with respect to DNS, but the 

same concept also must be applied to the ensemble of drops. That is, in LES the drops 

should not be the genuine drops of DNS, but instead should be ‘computational’ drops 

representing the effect of several genuine drops. Therefore, TP LES requires modeling 

both the effect of the flow field on the drops (through the drop far-field), and that of the 

drops on the flow field (through filtered source terms). 

In Part I of this investigation (Okong’o & Bellan (2002)), we created the DNS data- 

base that will here be used in developing and assessing these models, we derived the LES 

equations, and then we computed the budgets of these equations and assessed some sim- 

plifymg assumptions on the filtered DNS flow field. That analysis established the need 

for accurate models of the filtered source terms and of the SGS fluxes. In the present 

study, we seek to introduce a consistent two-phase flow LES methodology wherein both 

the number of grid points and that of tracked drops is reduced compared to DNS, and to 

develop the necessary models for the filtered source terms and the SGS fluxes. SGS TP 

flow models that treated the drop contribution but did not reduce the size of the drop 

ensemble or consider the effect of the drops on the %ow field were presented by Miller & 

Bellan (2000) and Okong’o & Bellan (2000). Some of these models shall be extended so 

as to calculate the filtered source terms from the filtered flow field and the reduced drop 

ensemble. Concerning the SGS fluxes, the focus will be on adapting and calibrating for 

TP flows, with phase change, models originally developed for incompressible SP LES. 

The SGS models we shall consider are the Smagorinsky (see Smagorinksy (1993)), Scale- 
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Similarity (Bardina et al. (1980)) and Gradient (Clark et al. (1979)) models. The appli- 

cation of these models to compressible flows is usually made through density-weighting. 

However, unlike incompressible flows for which only the momentum equation along with 

the pressure perturbation from a reference are considered, compressible flows require 

computation of the physical pressure through the equation of state as well as solution 

of the energy equation. The required models depend on the form of the energy equation 

that is used (e.g. Erlebacher et al. (1992), Fureby (1996), Martin et al. (2000)). In the 

present situation, the vapor emanating from the drops requires the consideration of yet 

another equation to describe species conservation. The thermodynamic variables (den- 

sity, pressure, composition, energy, temperature) are coupled through the equation of 

state, as well as through the heat and mass fluxes appearing in the energy and species 

equations. Therefore, appropriate modeling of the momentum, energy and species SGS 

fluxes must be carefully assessed. 

This paper is organized as follows: In 5 2 we summarize the DNS equations which 

constitute a set comprising coupled conservation equations for the gas phase and liquid 

phase. The coupling describing the interaction between the two phases is provided in the 

gas-phase conservation equations by source terms. These equations were used to generate 

the DNS database, as detailed by Okong’o & Bellan (2002), which is summarized in 3 2.5. 

The LES equations derived in Okong’o & Bellan (2002) are presented in 5 3, and the terms 

requiring modeling are identified. Models for the filtered source terms appearing in the 

LES equations are investigated in 5 4, while several constant-coefficient SGS models are 

proposed and calibrated in 3 5. Finally, conclusions and further discussions are presented 

in 5 6. 
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2.  DNS equations 
5 

The detailed DNS equations along with the justification of the assumptions embodied 

in them were described in Part I (Okong’o & Bellan (2002)), based on the formulation 

of Miller & Bellan (1999). Here, we present only those aspects relevant to the LES 

methodology designed to replicate the DNS large scales. The governing equations are 

formulated in an Eulerian frame for the gas phase and a Lagrangian frame for the drops. 

The gas phase consists of two species which are the carrier gas and the vapor evolving 

from the drops. The drops are treated as point sources of mass, momentum and energy for 

the gas phase; t h s  treatment is justified by the dilute (i.e. volumetrically small, 0(10-3)) 

loading and the size of each particle being much smaller than the Kolmogorov scale. 

2.1. Gas phase equations 

We define the vector of gas-phase conservative variables 4 = { p ,  p i ,  pet,  p Y v }  and denote 

the DNS Row field as 4, where p is the density, ui is the velocity in the xi coordinate 

direction, et is the total energy and YV is the vapor (subscript V) mass fraction (the 

carrier gas, subscript C, mass fraction is Yc; Yc + Yv = 1). The gas-phase conservation 

equations axe: 

where SI ,  S I I , ~  and 5’111 are source terms due to the interaction with the drops. The 

thermodynamic variables, to be computed from 4, are the internal energy (e = et - 
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uiui/2), the pressure ( p ) ,  the temperature (T)  and the enthalpy ( h  = e + p / p ) .  We 

assume perfect gases, for which the pressure is 

where R = RvYv + RcYc, Rv = %/mv, Rc = hL/mc, R, is the universal gas 

constant and mC and mv axe the molar weights of the carrier gas and vapor respectively. 

We further assume calorically perfect gases (constant specific heats), so that 

where C, = C,,vYv + Cp,cYc, Cp,c = C,,c (TO) and Cp,v = Cp,v (To) and hb is the 

reference vapor enthalpy at (To ,po )  obtained from integration or tables, which accounts 

for the enthalpy difference between the vapor and carrier gas at the reference conditions. 

For (2.1)-(2.5), we also specify: the viscous stress, 

where p is the viscosity and 

1 aua s, (4 )  = - - + - 2 (a, 2) 
is the rate of strain; the vapor mass flux, 

(2.10) 

where thermal diffusion effects have been neglected, Vvj is the vapor diffusion velocity, 

and D is the df is ion coefficient; the carrier gas mass flux 

and the heat flux, 

(2.11) 

(2.12) 
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where X is the thermal conductivity. In (2.8), (2.10) and (2.12), p,  D and X are assumed 

constant, and may be defined through the Prandtl and Schmidt numbers, Pr = @,/A 

and SC = p/  (pD). 

2.2. Drop (liquid-phas e)  equations 

The equations describing the drop evolution have been presented in detail by Miller & 

Bellan (1999) and only their essence is presented here. We define 2 = { X i ,  vi, T d ,  m d }  

as the drop field with position Xi, velocity vi, temperature T d ,  and mass m d .  Under the 

assumptions stated previously, the evolution equations for each drop, in a Lagrangian 

frame, are: 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

where F; is the drag force, Q is the heat flux, m d  is the evaporation rate, and CL is 

the heat capacity of the drop liquid. Lv is the latent heat of vaporization, which, for 

calorically perfect gases, is a linear function of temperature, LV = hb - (CL - Cp,v)Td. 

The drop evolution depends on the gas-phase primitive variables, $ (4)  = {ui, TI Yv,p} , 

whose value at the drop surface (subscript s) and at the drop far-field (subscript f) enter 

the calculation. The far-field variables are taken as the gas-phase primitive variables 

interpolated to the drop locations. The detailed expressions for Fi, Q, and m d  involve 

validated point-drop correlations which are based on Stokes drag, 4 t h  particle time 

constant Td = p~d2 / (18p ) ,  where p~ is the density of the liquid and d is the drop 



8 

diameter ( m d  = pL7rd3/6): 
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(2.17) 

(2.18) 

(2.19) 

In (2.17), f l  is an empirical correlation to correct the Stokes drag for finite drop Reynolds 

numbers 

1 + 0.0545 Re,l+O.l Rei/’ ( 1  - 0.03 Resl) 
f l  = 

1 a 
I (2.20) 

a = 0.09 + 0.077 exp (-0.4 &,E) , b = 0.4 + 0.77 exp (-0.04 Re,l) , (2.21) 

based on the slip Reynolds number Re,l = Iui,f - vi1 pd/p where ui,f - wi is the slip 

velocity, and on the blowing Reynolds number Reb = Ubpd/p where ub is the blowing 

velocity obtained from the mass conservation relation at the drop surface, m d  = -1~pd2U~.  

The correlation of (2.20) is valid for the ranges 0 6 Re,l 6 100 and 0 < h b  Q 10. In 

(2.18), C,,f = Cp,vYv,f + Cp,CYC,f and f2 = ,B/(eP - I), where = -1.5PrriZd~d/md is 

constant for drops obeying the classical ‘d2 law’ (Williams (1965)). In (2.19), the mass 

transfer number is BM = (Yv,, - Yv, f ) / ( l -  Yv,,) where the surface vapor mass fraction] 

Yv,,,, is calculated directly from the mole fraction, Xv,,, which is obtained by equating 

the vapor and liquid fugacities at the surface (i.e. Xv,,p, = psat; also p ,  = p f ) ,  where 

the saturation pressure, p,,t, is provided by the Clausius-Clapeyron relation. This leads 

to 

where patm=l atm and TB,L is the liquid saturation temperature at pat ,  (i.e. the normal 

boiling temperature). Finally, the Nusselt, Nu,  and Sherwood, Sh, numbers appearing 

in (2.18) and (2.19) are empirically modified for convective corrections to heat and mass 
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transfer based on the Ranz-Marshall correlations 

9 

Nu = 2 + 0.552 Rei{’ (PT)’/~ , Sh = 2 + 0.552 Rei{’ ( S C ) ~ / ~  . (2.23) 

Except for T d ,  which depends on p, (2.17)-(2.19) depend essentially on ratios of trans- 

port properties through non-dimensional numbers. Therefore, the value of Td  and thus 

for a given liquid and drop size, the value of p determines the interaction time between 

drops and gas. 

2.3. Source temns 

As in Miller & Bellan (1999), each drop acts as a point source of mass, momentum and 

energy for the gas phase, with the drop source vector 

where hv,, = c p , v T d  + hb is the vapor enthalpy at the drop surface. The drop sources in 

the Lagrangian frame must be reconstructed in the Eulerian frame to obtain the gas-phase 

source vector S which contains the terms in (2.1)-(2.4), S (+f, 2) = { S I ,  S I I , ~ ,  SIII} .  As 

in Miller & Bellan (1999), we use 

(2.28) 

where the summation is over all drops CY residing within a local numerical discretization 

volume, V, and the geometrical weighting factor, wa, is used to distribute the individual 

drop contributions to the eight nearest neighbor surrounding grid points (i.e. corners 

of the computational volume V) proportionally to the drop distance from those nodes. 
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These source terms are then minimally ‘smoothed’ using a conservative operator so as 

to retain numerical stability of the Eulerian gas-phase fields. 

2.4. Flow configuration and numerical procedure 

The mixing layer geometric configuration is illustrated in figure 1 where the stream- 

wise (q), the cross-stream ( x z ) ,  and the spanwise ( x 3 ) ,  coordinates are shown, and the 

domain lengths are L1, La and L3 in each direction. Periodic boundary conditions are 

used in the x1 and 5 3  directions, and adiabatic slip wall conditions (see Poinsot & Lele 

(1992)) are employed for the z 2  boundaries. The free-stream velocity UO = Mc,0uc,o 

is calculated from a specified value of the convective Mach number M,,o based on the 

carrier gas initial speed of sound ac,o = ~RCTc,oCp,c/Cv,c where Tc ,~  is the initial 

uniform temperature of the carrier gas at the initial uniform pressure; the carrier gas is 

the sole initial species in the gas phase. The initial vorticity thickness is 6,,0 = 6, (0) 

where 6, (t)  = Avo/ (a (2~1)  /aq),, with the brackets () denoting averaging over ho- 

mogeneous ( x 1 , x 3 )  planes and the velocity difference across the layer is AUo = 2Uo; 

the initial mean streamwise velocity has an error-function profile. The specified value of 

the initial Reynolds number, Reo = poAUoG,,o/p, where po is the initial gas density, is 

used to calculate p. The thermal conductivity and diffusivity are then computed using 

this value of p and specified values of Prandtl and Schmidt numbers of 0.697 (the Lewis 

number is unity). All thermophysical properties are the same as those employed in the 

simulations of Miller & Bellan (2000) using air as the carrier gas and decane as the drop 

liquid. 

To promote layer growth, the layer is initially perturbed so as to induce roll-up and 

pairing. The perturbations, described in Miller & Bellan (1999), follow Moser & Rogers 

(1991) in specifying spanwise and streamwise vorticity fluctuations, with streamwise and 

spanwise wavelengths in the 2 1  and 2 3  directions of XI = 7.296,,0 and A3 = 0.6X1. For 
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all the simulations performed herein, L1 = 0.2 m, L1 = 4X1, Lz = l .lL1 and L3 = 4x3. 

The relative amplitudes of the forcing perturbations with respect to the circulations are 

10% and 2.25% in the spanwise and streamwise directions, respectively. 

The drops are initially distributed randomly throughout the 22 < 0 domain with 

specified temperature, velocity, number density and size distribution. Initially, all the 

drops have the same temperature, Td,o,  and have the same velocity as the gas phase at 

their location. The mean number density profde is smoothed near the center-line, 5 2  = 0, 

using an error function profile. The drop size distribution is initially specified through 

the drop Stokes number St = ~dAUo/6,,0 whose initial distribution is Gaussian with 

mean 3 and standard deviation 0.5. The number of drops is determined by the initial 

mass loading MLo (initial ratio of mass of liquid to mass of carrier gas in drop-laden 

part of domain). 

2.5. DNS database 

The above DNS equations were solved numerically using a fourth-order explicit Runge- 

Kutta temporal integration for time derivatives and eight-order central finite differences 

with tenth-order filtering for spatial derivatives (Kennedy & Carpenter (1994)). A fourth- 

order Lagrange interpolation procedure was used to obtain gas-phase variable values at 

the drop locations. The DNS endeavor was undertaken to achieve several transitional 

states that could be further analyzed for a pr ior i  turbulence modeling. DNS initial con- 

ditions are listed in Table 1. Detailed characterization of these simulations, including the 

adequacy of the resolution and flow visualizations of the Reo = 600 transitional states 

are described in Part I (Okong’o & Bellan (2002)). In the present paper, a pr ior i  analysis 

will be restricted to SP600 and TP600a2, with the intention of ‘blind’ testing the models 

thus obtained on the other cases on an a posteriori basis (Part I11 of this study). 
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3. LES equations 
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The LES uses a mathematical description similar to that of DNS, i.e. Eulerian for the 

gas phase and Lagrangian for the liquid phase. Drops tracked in the LES will follow the 

DNS evolution equations presented in 3 2.2; however, the LES may use computational 

(defined in 5 4.2) rather than physical drops. The gas-phase LES equations are derived by 

spatially filtering the gas-phase DNS equations described in 2.1. The filtering operation 

is defined as 

(3.1) 

where G is the filter function, with the property that = 1, and Vf is the filtering volume. 

In this study, G is a top-hat (box) filter, and therefore 4 is simply the volume-average. 

The Favre (density-weighted) filtering is defined as 4 = 2 / p .  We also assume that 

filtering and differentiation commute, which is correct except near boundaries (because 

the size of the filtering volume decreases as the boundary is approached). 

After incorporating various simplifying assumptions (see Okong'o & Bellan (2002)), 

the LES equations become 

where the SGS fluxes axe given by 

(3.4) 

(3-5) 
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The notation f (4) denotes a function of the filtered flow field, 4, that has the same 

functional form as in the DNS but is in general different from its filtered counterpart 

f .  (The replacement of f (4) by f (6) that is implicit in (3.2)-(3.5) was found by 

Okong’o & Bellan (2002) to be generally valid for the flow fields in this study.) 

- 

From (3.1), the filtered source terms (3 = { S I ,  S I I , ~ ,  S’III} )  are properly interpreted 

by considering a drop located at 2 within the filtering volume Vf and its contribution 

within that volume 

where Sd6 y’- X is the point-source contribution from the drop and 6 is the delta 

function. For G being a tophat filter, the filtered source term is a volume-average over 

the drops ,B within the filtering volume 

( -> 

where s d  was previously defined in (2.24). (Note that S is not obtained by filtering the 

DNS S obtained through (2.28).) 

Equations (3.2) - (3.5) for 6 contain terms that cannot be computed directly from 6 

and that therefore need to be modeled, namely, (1) the filtered source terms ($1, S I I , ~ ,  

8111) and (2) the SGS flux= (~ij , <j , qj). 

4. Models for filtered source terms 

In LES of TP flow with evaporating drops, the effect of the drops on the gas phase 

occurs through the filtered drop source terms (3). Two modeling issues arise in computing 

8. First, in calculating through (3.8), the source effect of each drop ( s d )  depends on 

both the drop state (2) and the unfiltered variables at the drop far-field ($f). However, 

in LES, is not available and must be modeled from the filtered flow field (6). Second, 
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for the gas phase, the resolution requirements for LES can be reduced compared to 

DNS because in LES only the large scales need to be resolved. In a similar spirit, the 

computational demands for the liquid phase can be diminished by simulating a reduced 

drop field, here denoted 3, in which case 8 now needs to be modeled from 2. The 

proposed models for 3 address the two issues just elaborated, namely, the calculation 

of $f from (b and the reduction of the number of tracked drops. Using the available 

DNS database, such models can be compared a priori against the ‘exact’ filtered source 

terms, i.e. 3 ($f, 2) calculated from the actual unfiltered flow field and the full drop 

field. When analyzing the DNS database, the issue of the reduced drop field may be 

separated from that of unfiltered variable modeling by calculating filtered source term 

models using the actual unfiltered variables but with the reduced drop field, or using 

the modeled unfiltered variables along with the full drop field. By considering an ‘ideal’ 

unfiltered variable model that is the same as the actual unfiltered variables, and that 

would thereby accurately incorporate the gas-phase SGS effects, we can designate all the 

filtered source term models according to the underlying unfiltered variable models, which 

are described next. 

4.1. Models of the unfiltered gas-phase variables at drop locations 

A requirement to model the filtered source terms is the determination of the gas-phase 

quantities to be used in computing the source term contribution of the individual drops. 

In the modeling proposed here, the drop source terms ( S d )  will be computed using the 

DNS relations (see § 2.2), which require the knowledge of the drop far-field. In the DNS, 

the flow field (4)  is computed at the grid points and the drop far-field ($f) is computed 

at drop locations. The DNS procedure to obtain $f from # can be conceptualized as 

$I (4 )  5 $If, where $ (4 )  denotes the functional dependence between primitive (q!~) and 

conservative (4 )  variables which is used to compute primitive variables at the grid points 
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and Z denotes the interpolation process from grid points to  drop locations. The LES 

requires computing from the filtered flow field (4) a model (subscript m) for the drop 

far-field, denoted $f ,m,  which necessarily entails a reconstruction process R*. Defining 

the filtered gas-phase primitive variables as 4 = iii,Z?,?~,p , then consistent with 

the gas-phase equations (see 3 3), 4 (4) takes the same form as $ (4). Two possible LES 

procedures for calculating $f,m are: (1) 4 (6) - qm 5 $f,m and (2) 4 (4) 5 qf 5 

y5j,m. Higher accuracy is attained by computing gas-phase quantities at the (fixed) grid 

points rather than at the (moving) drop locations, hence we adopt procedure (l), in 

{ } 

R’ 

which the unfiltered variable models computed at the grid points are denoted as Gm. 

The qm that we consider are those for which Okong’o & Bellan (2000) conducted an 

a priori study, which however did not examine the filtered source terms resulting from 

these y5m. All the models of Okong’o & Bellan (2000) are based on the filtered flow field 6, 
and some models also use the SGS standard deviation, OSGS, where ggGs (4) = 3 - G2 
(see (5.1) and (5.2)). We will compare four $m, denoted as: 

( a )  Ideal, which precisely replicates $, i.e. $m = $. Although such a model cannot be 

constructed in LES, in the a prion‘ analysis it allows us to assess the best-case scenario 

when errors due to modeling the unfiltered flow field are eliminated. 

( b )  Baseline, which uses the filtered field, i.e. gm = 4. This model neglects SGS effects 

on drop evolution. 

( c )  Random, which uses a random function for $m, specifically, a Gaussian with mean 

4 and standard deviation OSGS. This model is based on the a priori analysis of Okong’o & 

Bellan (2000), which showed this distribution to be applicable to the gas-phase variables 

within the filtering volumes. 

(d) Deterministic, which uses an analytically derived model of Okong’o & Bellan (2000) 
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wherein 
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with the filtered standard deviation 5 = 0 modeled as 

;;2= pq2= ( d a - J q 2 .  (4.2) 

In LES, both USGS and some components of ?c, (specifically, ? and 9; see Okong’o & 

Bellan (2002)) must be modeled; however, for purposes of the present a priori analysis, 

we will use the actual 4 and USGS as calculated from the DNS database in order to 

decouple the assessment of the reconstruction process from the issue of modeling ??, and 

CTSGS. The modeling of USGS is discussed in 3 5. 

The analysis here consists of using qhm to compute the drop far-field primitive variables 

(q.!Jf,m), the source term contribution of individual drops (Sd,m = Sd ($ f ,m,  2)) and the 

filtered source terms (sm = s (q.!Jf,m, 2)). For brevity, $ ~ f , ~ ,  Sd ,m  and sm will be desig- 

nated according to q.!Jm as ideal, baseline, random or deterministic models. The results 

from the models will be compared to the ‘exact’ (i.e. DNS flow field) quantities (+f, 

Sd and 3). Note that, because we are still considering the actual drop field, the ideal 

model here leads to the exact $f, S d  and 3; therefore only the other three models will be 

assessed. We use the same method as in the DNS to interpolate the gas phase variables 

to the drop locations and to calculate s d .  Both 3, and are calculated through (3.8)’ 

that is, at this juncture the exclusive difference them is in the use of qm instead of +. 
Comparisons of two quantities defined at all grid points, X (XI, z2, z3) and Y ( q , x 2 ,  q), 

are performed using a least-squares (LS) fit of Y = bX which leads to the slope 
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and the correlation 
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where (0) denotes averaging over all grid points. (For drop-based quantities, the averag- 

ing is performed over the ensemble of all relevant drops.) The analysis is here performed 

for TP600a2 at the transitional state and is based on the filtered flow fields obtained at 

two different filter widths, A = 4Ax and A =  AX, where Ax = max (Ax1 , Ax2, Ax3) 

is the grid spacing with Ax1 N Ax2 N Ax3 for our DNS database (see Table 1). Slopes 

b according to (4.3), where Y is the exact quantity and X is the model, are tabulated in 

Table 2 (for $f), Table 3 (for S d )  and Table 4 (for 3). 

Displayed in Table 2 is the assessment of the baseline, random and deterministic Gm 

in their prediction of $f. For all models, the largest discrepancy is in the modeling of 

u3 , f ,  with errors (measured according to the deviation from the optimum slope of unity) 

of 8%, 11% and 6% for the baseline, random and deterministic Gm respectively when 

d = 4Ax. When d = 8 4 2 ,  the corresponding errors are 17%, 29% and 9%. Therefore, 

the deterministic $f,m is slightly better than the baseline $ ~ f , ~ ,  while the random $f,m 

is slightly worse. Next, $p and the three $f,m are used in (2.24) to calculate drop source 

terms (Sd or S d , m ) ;  the slopes comparing s d  to the model predictions are listed in Table 

3. The largest discrepancy is in the modeling of SII,3,d, with errors of 21%, 71% and 

28% for the baseline, random and deterministic models, respectively, for A = 4Ax, and 

as much as 6l%, 89% and 69% for d = 8Ax. The behavior mimics that of Table 2, 

where 2 1 3 , ~  was the least accurately modeled component of $f. However, the modeling 

errors are much larger in S d , m  than in $ ~ f , ~ ,  especially for the random model which 

performs quite poorly, while now it is the baseline model rather than the deterministic 

model that performs best. AJl the slopes are less than unity, meaning that the source 
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terms will on average be over-predicted. Finally, the filtered source terms (s), which are 

the quantities entering the LES equations, are shown in Table 4; these are computed by 

summing the (exact or modeled) drop source terms of Table 3 over all drops within each 

filtering volume. Similar to Table 3, the largest discrepancy is in the modeling of S I I , ~ ,  

with errors of 19%, 26% and 21% for the baseline, random and deterministic models, 

respectively, when 6 = 4Ax, and as much as 52%, 55% and 57% for = 8Ax. The 

smallest discrepancy is in the modeling of 31 and is close to that in modeling S I I I .  

In comparing the results for Sd,m and sm we note that for 3 all the slopes for the 

random model tend to increase with respect to those of s d  (except for S I ) ,  whereas 

for the other two models, only the slopes of some momentum source terms (5’11,~ and 

,511,s) consistently tend to increase. The baseline model is still the best, followed by the 

deterministic model, but the random model is now comparable to the other two. Similar 

to what was seen for s d ,  for s all the slopes are less than unity, meaning that 3 will on 

average be over-predicted. Notably, the slopes for s listed in Table 4 are considerably 

lower those for $f listed in Table 2, and all the models show definite deterioration with 

increased A. 

This analysis indicates that with exact OSGS, the baseline model is generally no worse, 

and usually better than the more sophisticated random and deterministic models. This 

can partly be attributed to the non-linear nature of the relationship between $f and Sd,  

since small discrepancies in $f,m seem to lead to much larger discrepancies in ,!&m. The 

errors in gm are considerably larger than those in $f,m. Furthermore, the magnitude of 

the error in $f,m shows no predictive ability for the error in the resulting sm. Appar- 

ently, the filter width is the main determinant regarding the accuracy of Sm, since the 

errors consistently and dramatically increase with 6. This analysis also suggests that, for 

reasonable models for OSGS, the effect on Sm of replacing the exact USGS (available here 
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from DNS but not available in typical LES) with a modeled OSGS will not be significant, 

since the baseline model is equivalent to the random or deterministic models with USGS 

set to zero. 

4.2. Computational-drop modeling 

Having studied the effect of the unfiltered-variable modeling on the source terms, we now 

turn to the issue of reducing the number of computed drops. In the simple formulation 

considered here, each computational drop represents a fixed number of actual drops. 

That is, if the number of real drops is N, and the number of computational drops is 

Np, then each computational drop p represents NR drops, where NR = N,/Np is the 

ratio between the number of actual drops and the number of computational drops. The 

filtered source terms are then computed for the Np drops, and scaled by NR leading to 

1 sm (‘$f,m (4) 7 2) = NR ii; [ s d  (’d’f,m (4) I 2 ( N R ) ) ] p .  (4.5) 
P 

As in (3.8), the summation is over the drops within the filtering volume Vf, but now 

over a representative drop field (2) rather than the actual drops (2). The source term 

contributions for each computational drop are computed in the same manner as for 

actual drops, that is, the representative nature of each drop is entirely embodied in the 

parameter NR. The unfiltered variables ($f) required for calculating each drop’s source 

term contributions are modeled ( $ ~ j , ~ ) ,  as described in 4.1. The filtered source term 

models (sm) will be designated according to the underlying primitive variable model 

( l C f m )  as ideal, baseline, random or deterministic. The modeled filtered source terms are 

next compared to the exact (i.e. DNS) filtered source terms s($f,Z).  Note that the 

ideal model leads to the exact ,!? only on the actual drop field ( N R  = 1). For the analysis 

undertaken here, the computational drops are selected from the DNS drops by extracting 

them from the array containing 2 with a stride of NR; each computational drop retains 
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the characteristics (mass, location, velocity, temperature) of a physical drop. In LES, no 

such correspondence between computational and physical drops would exist, because the 

unfiltered flow field that governs the evolution of physical drops would not be available. 

Thus, in a LES the choice of NR would be based on experimental data in conjunction 

with results from the present analysis. 

To illustrate the effect of increasing NR (decreasing the number of computational 

drops), in Figure 2 are the ( q , x 3 )  homogeneous-plane averages and RMS of 31 and 

its models. The results for 3, are labeled according to the $m used (ideal, baseline, 

random, deterministic), while those for 3 are labeled as exact. These plots for NR = 1,8 

and 64 are not intended to be typical, but rather to visualize the global comparisons 

to be presented below. Clearly, in the middle of the layer there is strong evaporation, 

as indicated by the average 31 being positive. In the lower stream, on average 31 is 

negative, indicating net condensation; further scrutiny revealed that at some locations 

there is also evaporation occurring. As shown by the small RMS in the lower stream, the 

magnitude of condensation/evaporation is small. Returning to the issue of computational- 

drop modeling, Figure 2 shows that 31 is generally overpredicted by the models. Whereas 

on average, the models do not seem to show much dependence on NR, the RMS shows 

a clear deterioration with NR. The greatest error in SI , ,  occurs in the middle of the 

layer where the strongest evaporation occurs and where the filtered flow field differs 

most from the unfiltered flow field. In contrast, near the boundaries the filtered flow field 

is almost identical to the unfiltered one. Since the models are relatively more accurate 

at the lower stream boundary, where the non-zero 31 shows that the drops are still 

evaporating/condensing, the indications are that drop evaporation is not by itself the 

cause of errors in the filtered source term models. Rather, errors arise from the imprecision 

in representing the actual drop field by the computational drop field, since the ideal model 
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(which uses the actual unfiltered variables) gives the same results as the other models 

near the lower boundary. Given that the errors due to modeling the unfiltered flow field 

(see 5 4.1) are unavoidable in LES, we want to determine the conditions under which the 

additional errors introduced by the computational-drop modeling are acceptably small. 

To quantify the effect of increasing NR, slopes equivalent to those in Table 4 are plotted 

in figures 3 and 4 for 31 (figures 3a and 3b), 3111 (figures 3c and 3 4  S ’ I I , ~  (figures 4a and 

4b) 311,~ (figures 4c and 4 4  S’II,3 (figures 4e and 4.n for A of 4Ax and 8Ax, respectively. 

These figures are for NR = 1,2,4,8,16,32,64 for all filtered source term models; all 

quantities are compared to 3. (Note: The slopes for NR = 1 were previously presented 

in Table 4.) In figures 3 and 4, all the slopes are smaller than unity, meaning that all the 

models overestimate the source terms. Generally, the baseline and deterministic models 

are quite similar, and better than the random model. Consistently, the ideal model gives 

the best prediction for 3; its relative superiority is significant at the larger filter width, 

and at the smaller filter width when NR is small. For the smaller filter width at larger 

NE,  all the models give similar predictions. The accuracy of the models declines with 

NR,  but not at the same rate for all source terms as 3111 seems to be best predicted 

whereas 311,3 seems to be the worst predicted with the strongest error growth with NR. 

From figures 3 and 4, it can be concluded that for small NR (more computational 

drops) the inaccuracies in $f,m are a much stronger source of error than is the effect 

of computational-drop modeling (NR > 1). This explains why, when using $f, the ideal 

model gm improves for fixed NR as A is increased from 4Ax to 8Ax since the filtering 

volume is increased and the number of drops within each filtering volume is accordingly 

increased, giving a better accuracy; whereas the opposite is observed with all the other 

S ,  because as increases, information is lost during the gas-phase variable modeling, 

resulting in decreasing accuracy (as 6 increases, 4 is more unlike $, see Table 2). How- 
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ever, for large NR (fewer computational drops), larger than about 8, the effect of having 

few drops dominates, as can be seen by the increasing convergence of the slopes from 

the ideal sm to those from the other sm for larger NR, Figures 3 and 4 also show the 

effect of the nonlinear relationship between $Jj,m and 3, in that a proportional reduc- 

tion in grid resolution and number of drops does not give the same error in the filtered 

source terms. That is, increasing 6 from 4 4 2  to 8Ax means an eight-fold increase in 

the filtering volume, but an eight-fold decrease in the number of drops (NR = 1 , 2 , 4 , 8  

compared to NR = 8,16,32,64, respectively) does not give the same error in sm. For 

example, an eight-fold increase in filtering volume leads to a doubling of the error on $111 

for NR = 1, but an eight-fold decrease in the number of drops leads to errors on $11 

that are either much larger or much smaller, without consistent trend as a function of 

NR. In LES the effect of modeling $Jr is unavoidable and most likely 6 would have been 

selected according to the gas-phase resolution requirements; but apparently NR should 

be considered as a parameter to be optimized along with 6. 

The above results concerning the computational drops were obtained at a transitional 

state. It is pertinent to inquire whether the overprediction of the filtered source terms is 

unique to this time station, or rather a general occurrence. To this end, the analysis of sm 
was repeated at t*=20, 45 and 80, corresponding to time stations before the first pairing, 

between the first and second pairings and at the end of the second pairing. The results are 

plotted in along with those at t*=105, in terms of the maximal percentage error (greatest 

deviation from unity over the five source terms, multiplied by 100) in figure 5 for t*=20 

(figures 5a and 5b), t*=45 (figures 5c and 54, t*=80 (figures 5e and 58, t*=105 (figures 

5g and 5h) at A of 4Ax and 8Ax. Figures 59 and 5h represent the data in figures 3 and 4 

(at t*=105), and the remarks made when discussing those figures are even more evident: 

(1) the effect of modeling q!~f is dominant at the larger A, where the error is initially 
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large but not so sensitive to NR, (2) the effect of modeling $f is significant at the smaller 

A for smaller NR but not at larger NR, (3) the baseline model performs best, followed 

closely by the deterministic model, with the random model giving the worst predictions, 

and (4) decreasing the number of drops proportionally to the increase in filtering volume 

size does not necessarily maintain the filtering error. In considering the pre-transitional 

time stations, the trends at a given NR seem to be as follows: (1) for the smaller A, 

the error seems insensitive to time, except for the lowest NR = 1 or 2 where the error 

clearly grows with time, and (2) for the larger A, the error generally grows with time, 

with more pronounced error growth at smaller values of NR. 

From this a priori study, the indications are that the unfiltered flow field models 

perform better for smaller filter widths; however, only at small values of NR (below 

about 8 for d = 4A2) does this translate into improved accuracy of filtered source 

term models. On the other hand, for larger filter widths, there is little to be gained by 

using small NR, since the error growth with NR is modest; however, the filtered source 

term models will be less accurate than at the smaller filter width. None of the models 

considered yields particularly good predictions for the filtered source terms, with errors 

ranging from 20% to 90%. However, this does not necessarily preclude their use in LES, 

since from the budgets of the LES equations (Okong'o & Bellan (2002)), the filtered 

source terms are an order of magnitude smaller than the largest terms. The sensitivity 

of flow field and drop evolution to filtered source term errors can only be determined by 

performing an a posteriori LES study. 

5 .  Subgrid Scale models 

This portion of the a priori study is devoted to analyzing models for the SGS fluxes 

(defined in (3.6)) appearing in the LES equations (3.3)-(3.5). This activity involves the 
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consideration of several possible functional forms for the fluxes, which contain coefficients 

of proportionality to be determined through calibration on the DNS transitional flow 

field. Additionally, some of the filtered source term models described in 3 4.1 use the 

SGS variance OSGS, here defined as 

5.1. finctional forms 

We consider here the following three typical SGS models: 

(a) The Smagorinsky (SM) model for the SGS fluxes is 

where 

s2 (4)  = sij (4 )  sij (4 )  . (5.4) 

To model T k k ,  which may be important for compressible turbulence, we use the Yoshizawa 

(1986) ( Y O )  model 

(5.5) 
- 2  2 

r k k  = cYOA s (6). 

The SM model is based on eddy-viscosity considerations which cannot be directly ex- 

tended to model the aiGs of ?, ?V and ji. 

( b )  The Gradient (GR) model for the SGS fluxes is 
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while the GR model for agGS (4) is 
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Theoretically (i.e. from a Taylor series expansion, see Appendix A) CGR = 1/12 for a 

cubic tophat filter. 

(c) The Scale-Similarity (SS) model for the SGS fluxes is 

and the SS model for USGS 

(5.9) 

where the overhat 0 denotes (unweighted) filtering at the test-filter level A 2 A. Scale- 

similarity implies that CSS = 1 for identical grid and test filters (Bardina et al. (1980), 

Pruett & Adams (2000)), however, practically its true value depends on the situation 

under study as well as on the filter type and on the ratio A/& (see Appendix B). For 

example, Liu et al. (1994) found from analysis of experimental data that for turbulent 

jets 0.3 6 Css 6 0.6, whereas the rigorous derivation of Pruett et al. (2001) led to 

Css = a2/cz for second-order grid and test filters whose second-order coefficients in the 

Taylor expansions are a2 and cz, respectively. 

Although generally each SGS quantity may have a model coefficient value different from 

the others and furthermore, the coefficient may be spatially and temporally varying, for 

simplicity, in this study, all SGS quantities will use the same value of the model coefficient 

(CSM, CGR or Css) which is taken spatially and temporally constant. In keeping with 

the LES philosophy of reduced computational effort, more complicated model coefficients 

are usually considered only after constant coefficients prove inadequate a posteriori. 
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5.2. Constant-coefficient calibration 

The availability of a DNS database allows a priori calibration of the constant coefficient 

appearing in each of the SGS flux models under consideration. (The coefficient may also 

be calibrated a posteriori by performing LES and attempting to match the filtered DNS 

results.) The calibration procedure used here consists of three stages: 

( a )  Calculation of the coefficient for each SGS quantity: To this end, we use LS fits of 

the SGS quantities to their models to compute the slope, b, which would be the constant 

coefficient, and the correlation, R, according to (4.3) and (4.4). If X is the model (without 

the coefficient) and y is the SGS quantity, then the slope is the constant coefficient. R2 

measures the fraction of the variation in y that is due to the variation in X (Ayyub 

& McCuen (1997)); therefore R is an indicator of the suitability of using a constant 

coefficient and ideally would be unity. 

( b )  Calculation of the coefficient for all SGS quantities: To obtain a single coefficient, 

we average the slopes for the individual SGS quantities. The standard deviation of these 

slopes measures their variation from the average. Therefore, the smaller the standard 

deviation relative to the average slope, the more suitable is the average slope for being 

the single coefficient for all the SGS quantities. 

( c )  Calculation of the coefficient for the SGS model: To obtain a single coefficient, we 

calculate the average slopes on many filtered flow fields (or realizations of the same flow), 

and develop the best value for the SGS model coefficient. This coefficient may be found 

to depend on filter width, Reo,  Mc,o flow configuration, etc. The applicability of the 

coefficient will generally be limited to the types of flow for which it was calibrated, which 

constitutes the main drawback of the constant-coefficient method. However, the hope 

of the constant-coefficient LES methodology is that the SGS are somewhat insensitive 

to the large scale flow, and that their calibration on a geometrically simple transitional 
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flow will be applicable to a variety of other flows. In this study, the focus is on possible 

dependence of SGS models on the presence or absence of drops, and on the filter width. 

This dependence of the coefficient on the Aow field is measured by performing t-tests 

of statistical significance on the average slopes obtained in the second stage described 

above. 

The calibration procedure outlined above is performed for the SM, Y O ,  GR and SS 

models. For the SS model, two test-filter widths (A = and A = 2A) are investigated. 

The analysis is performed for the SP600 and TP600a2 databases at the transitional states 

(t*=100 and t*=105 respectively) at two different filter widths (A = 4Ax and A = 8Az) 

for a total of 4 data sets. These two cases are selected for analysis because they have 

the higher Reo (see Table 1). The SGS quantities analyzed are {prij, p c j ,  uzGS (T), 
ff&s ( p ) }  (11 quantities) for case SP600 (for which Pv = 0,  vj = 01 and {pTi j ,  pci, 

P q j ,  ff&s p), u?jGS (Pv), ugGS @)} (15 quantities) for case TP600a2. The aiGS (i&) 

are excluded because ugGs (i&) = rij for i = j and are therefore already represented in 

the set of compared quantities. For each model, the slopes for each SGS quantity are 

presented in Tables 5-9, along with the average and the standard deviation of the slopes 

and the average of the correlations. We apply a two-tailed t-test for equality of means 

to these slopes (at a 5% level of significance, assuming unequal variances), and present 

the results of the t-tests in Tables 10-13. If the t-test indicates that the average slopes 

are equal, we take the mean of the average slopes (of the appropriate data sets) as the 

model coefficient. The analysis of the models, including the calibrated coefficients can be 

summarized as follows: 

( a )  Smagorinsky model (Table 5) and Yoshizawa model (Table 6): The correlation 

between the models and the SGS quantities is poor (0.24 to 0.31), and the large standard 

deviation is due to the large spread of the individual slopes. The t-test indicates that 
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the same coefficient can be applied to all four data sets; the mean value of the average 

slopes is 0.072. For r k k ,  the Y O  model (Table 6) has a correlation of about 0.8, which is 

considerably better than that for the SM model. From the four data sets considered, the 

mean value is Cy0 = 0.314. This large value of Cy0 compared to that of CSM indicates 

that ?-kk should not be neglected, in contrast to the results of Erlebacher et al. (1992) for 

isotropic turbulence. However, since the Smagorinsky model generally correlates poorly 

with the SGS quantities, it is not clear whether any benefit would be derived from 

not neglecting ?-kk. (Neglecting T k k  does not alter the average slope or the calibrated 

coefficient.) The calibration of the SM model along with the Y O  model leads to the 

coefficients 

CSM = 0.072, Cy0 = 0.314. (5.10) 

The value obtained here of CSM = 0.072 is higher than CSM = 0.172 N 0.029 used by 

Vreman et al. (1997), which was found to be too dissipative; the calibrated values will 

lead to a SM model that is even more dissipative. 

( b )  Gradient model (Table 7): The correlation between models and SGS quantities is 

excellent (0.91 to 0.97). From the t-test, the average slopes are equal for all four data 

sets, with a mean value across the four data sets of 0.152. The calibration leads to the 

GR model coefficient as 

CGR = 0.152. (5.11) 

(c) Similarity model (Tables 8 and 9): The correlation between models and SGS quan- 

tities ranges from good to excellent (0.72 to 0.94), with better correlation for A = 6. 

From the t-test, the average slopes are statistically equal when comparing SP600 to 

TP600a2, but not when comparing 6 = 4Ax to d = 8Ax. Therefore the SS model 
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calibration yields 

Css = 1.606 for A = A, A = 4Ax, 

Css = 1.996 for A = A, A =  AX, 

Css = 0.642 for A = 2& A = 4Ax, 

CSS = 0.808 for A = 2& = 8Ax. 
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(5.12) 

(5.13) 

(5.14) 

(5.15) 

Since the theoretical model coefficient is unity, the closest value to theory is attained 

with d = 8Ax and A = 2A. The coefficients at A = are about 2.5 times larger than 

those at A = 2A for the same A, so there is a strong coefficient dependence on A/&. 

On the other hand, the coefficients at A = 4Ax are about 80% of those at A = 8Ax, 

so the coefficient dependence on &/Ax is much weaker than that on A/& It can be 

analytically shown that there should be a coefficient dependence on A/A (Pruett et al. 

(2001); see Appendix B) such that CSS decreases with increasing A/A. However, the 

coefficient dependence on &/Ax being weak, suggests that the flow field is not quite 

scale-similar, perhaps due to the simulations being transitional rather than in the fully 

turbulent regime. 

These results are consistent with the a priori investigation of Pruett & Adams (2000) 

for the decay of isotropic turbulence in which the SM model correlated poorly with the 

exact stresses and the SS model correlated remarkably well, particularly when the grid 

and test filter were identical. However, correlations for the GR model are here much better 

when compared to those obtained by Pruett & Adams (2000) (0.9 compared to 0.6); this 

may be due to their use of the same form of the GR model as has been analyzed here 

that applies only to cubic tophat filters (see Appendix A), and which is inconsistent 

with their filter (one-parameter Pade-type ater) .  At this juncture, the prospects for 

successful TP LES using the SM model seem poor, since drop evolution in TP flows 
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is strongly dependent on the local conditions which are poorly captured by this model. 

The model calibration exercise also suggests that, to overcome deficiencies in the GR or 

SS model that have been found in some a posteriori studies (e.g.Vreman et al. (1997) 

who used the theoretical coefficients CSS = 1, CGR = 1/12), it may be more fruitful to 

adjust CGR or CSS rather than add the SM model (leading to ‘mixed’ models) and then 

attempt to adjust the SM coefficient. 

The most encouraging result of this calibration is the suggestion that coefficients cal- 

ibrated on compressible SP flow are statistically equivalent to those for TP flow with 

evaporating drops, implying that SGS models already developed for SP flows may be ap- 

plied to the SGS fluxes in TP flows. However, since the a priori study does not include 

either the effect of the flow field evolution on the drops or the interaction among all scales 

inherent in turbulence, a posteriori studies are needed to bear out this implication. 

6. Summary and conclusions 

A priori LES analysis has been performed on a database obtained from Direct Numer- 

ical Simulation (DNS) of a three-dimensional temporal mixing layer with evaporating 

drops. The DNS database consists of transitional states attained by layers with different 

initial Reynolds numbers and initial liquid-phase mass loadings. For DNS, the gas-phase 

equations are written in an Eulerian frame for two perfect gas species (carrier gas and 

vapor emanating from the drops), while the liquid-phase equations are written in a La- 

grangian frame, tracking each drop. The drops act as point sources of mass, momentum 

and energy into the gas phase, while the gas phase acts as the drop far-field to  affect the 

mass, position and temperature of each drop. LES equations governing the evolution of 

a spatially filtered gas-phase flow field are derived by filtering the gas-phase DNS equa- 

tions. Since these equations pertain to the large scales, the resolution can be decreased, 
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but when doing so the small scales need to be modeled. Consistently, compared to the 

physical drops in DNS, a reduced number of ‘computational’ drops should be tracked in 

LES . 

The LES models evaluated on the DNS database are of two types: those for the filtered 

source terms representing the effect of the drops on the filtered flow field, and those for 

the subgrid scale (SGS) fluxes arising from filtering the convective terms in the gas- 

phase DNS equations. The unfiltered flow field is required for the calculation of drop 

based quantities but would not be available in LES; therefore, various approximations 

were attempted for it, namely, the filtered flow field and the filtered flow field plus 

corrections based on the SGS variances. All of the filtered source term models were found 

to overestimate filtered source terms, with the relative error of modeling the unfiltered 

flow field compared to that of using computational drops showing a complex dependence 

on filter width and number of computational drops. Generally, the performance of the 

models deteriorates with decreasing number of Computational drops. 

To complete the LES modeling, constant-coefficient Smagorinsky, Gradient and Scale- 

Similarity models for the SGS fluxes were assessed and calibrated on the DNS database. 

The Gradient and Scale-Similarity models showed excellent correlation with the SGS 

quantities, while the Smagorinsky model performed poorly. Calibrated values of the SGS 

model coefficients were computed for various filtered flow fields; the values were compared 

for transitional states generated from single-phase (SP) and two-phase (TP) DNS which 

had the same initial Reynolds number and grid size and resolution. For all SGS flux 

models, these coefficients were statistically equivalent when computed on SP or TP flows. 

Additionally, for the Smagorinsky and Gradient model, these coefficients were statistically 

insensitive to the filter width, whereas for the Scale-Similarity model, the coefficients 

depended on the filter widths used. 
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Although some of the models presented seem promising, the true test of their appro- 

priateness will be in a posteriori studies. Such studies are needed to determine whether 

these models will lead to the proper evolution of the filtered flow field and of the compu- 

tational drops, and to appropriate interaction between the resolved and modeled (SGS) 

flow field. Of particular interest will be the behavior of the models for the filtered source 

terms as the number of computational drops is decreased. 

Appendix A. Derivation of gradient model 

The gradient model (Clark et al. (1979)) can be derived starting from the Taylor series 

expansion for a variable $i, 

Filtering this expansion leads to 

- 
(XO) & ( x k  - X k o )  ( X 1  - X i o ) + o  (A3).  (A2) a$i a2$i 

$i = $i (xO)+- (XO) ( x k  - x k o ) + -  
a x k  axkaxl  

Multiplying the series expansions for the variables $i and $j , then filtering yields 

Multiplying the series expansions for the variables $i and $j yields 
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Then, the general form of the gradient model, valid for any filter, is 
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where Vf is the filtering volume. Then, if xo is the centroid of the filtering volume, 

( x k  - X k o )  = - ( x k  - z k o )  dV = 0. (A 7) Vf ' J  Vf 

The terms ( Z k  - X k o )  (21 - x l 0 )  are the moments of inertia, which in the case of a cubic 

1 -  
12 

top-hat filter with symmetrical filtering volumes are - A 2 b k l  leading to 

Approximating the $,i derivatives by & derivatives leads to the gradient model for a 

cubic top-hat filter as 

This model is applied to the Favre-filtered quantities as 

This expression can be derived from (A5) by replacing the unweighted filtering with 

Favre-filtering, namely 

approximating the $,i derivatives by I,& derivatives. 

The model coefficient CGR can be expected to larger than its theoretical value, because, 

since $i is smoother than $,i, a?,&;,/aXk will have smaller magnitude than d $ , i / d X k .  
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Appendix B. Test-filter ratio dependence of scale-similarity model 
N. Okong'o and J.  Bellan 

The scale similarity model is (Bardina et al. (1980)) 

where the overhat 0 denotes filtering at the test-filter width A 2 A. For clarity, the 

derivation that follows uses the unweighted filter. The application to Fawefiltered guan- 

tities is through replacing the unweighted filter with the density-weighted filter, e.g. 

where refiltering is always unweighted. 

From (A2) 

Then 
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From (B 1) 

Using (A5) and (B8) 

For symmetrical atering volumes ( x k  - 2ko) = 0 and ( x ,  - x m o )  = 0; then assuming 

In the case of a cubic tophat filter, this would be 

This analysis shows the dependence of Css on the test-filter to grid-filter ratio. How- 

ever, it might not predict css because, generally, d & / d X k  is not a good approximation 

to d+i /dxk .  ( n o m  (A2) the error in the approximation is proportional to a2+i/ (dzkdX1) 

which is usually not small in a turbulent Aow field.) 

This work was conducted at the Jet Propulsion Institute (JPL) of the California In- 

stitute of Technology (Caltech) under the sponsorship of the U.S. Department of Energy 

(DOE), with Mr. Neil Rossmeissl (DOE Headquarters) and Mr. D. Hooker (DOE Golden 

Center) serving as contract monitors, under an agreement with the National Aeronautics 

and Space Administration.. Computations were performed on the SGI Origin2000 at the 

JPL Supercomputing Center. 
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at ttvan, at tt;.,,,, (estimated) 

SP500 500 0 0 256x288~160 100 2.580 1290 688 

TP500a2 500 0.2 2277222 256x288~160 100 2.827 1414 1336 

TP500a5 500 0.5 5693055 256x288~160 105 2.722 1361 2075 

SP600 600 0 0 288x320~176 100 2.485 1491 1054 

TP600a2 600 0.2 2993630 288x320~176 105 2.627 1576 2252 

TP600a5 600 0.5 7484075 288x320~176 105 2.794 1676 3070 
R e o :  initial-vorticity-thickness Reynolds number, Reo = poAU~S,,o/,u 

MLo: initial mass loading 

Nd: initial number of drops 

N1, N2,N3: number of grid points in 21, 22 and 2 3  directions respectively 

ttrans: transition time (dimensionless), t* = tAUo/6,,0 

Re,,,: momentum-thickness Reynolds number, Rem = p0AUobm/p 

CPU hours are estimates on 64 processors of an SGI Origin2000 

For all cases: L1=0.2m, Lz=0.22m, &1=0.12m , M,,0=0.35, Tc,0=375K, po=0.9415kg/m3, 

AU0=271.7m/s, 6,,0=6.859xlO-~m. 

For drop laden cases: Td,o=345K, p~=642kg /m~,  the initial St has a Gaussian distribution 

with mean 3 and standard deviation 0.5. 

TABLE 1. Initial conditions and transition times. 
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A = 4Ax d = 8Ax 

Model Baseline Random Deterministic Baseline Random Deterministic 

"1,f 1.002 0.999 1.002 1.005 0.998 1.004 

~ 2 , f  1.020 0.967 1.018 1.041 0.913 1.031 

~ 3 , f  1.076 0.890 1.063 1.175 0.712 1.092 

Tf 0.999 0.999 0.999 0.999 0.998 0.999 

YVJ 1.006 1.003 1.006 1.014 1.008 1.013 

pf 1.000 1.000 1.000 1.001 1.001 1.001 

TABLE 2. Slopes from least squares fit of exact to modeled quantities, slope=exact/model, 

TP600a2 at t* =105: Unfiltered primitive variables interpolated to drop locations. 

d = 4Ax d = 8Ax 

Model Baseline Random Deterministic Baseline Random Deterministic 

S I , d  0.949 0.847 0.944 0.869 0.729 0.853 

S I I , ~ , ~  0.839 0.440 0.803 0.556 0.229 0.514 

S I I , 2 , d  0.843 0.355 0.795 0.498 0.156 0.424 

S I I , 3 , d  0.787 0.288 0.718 0.390 0.113 0.306 

S I I I , d  0.948 0.798 0.942 0.864 0.669 0.852 

TABLE 3. Slopes from least squares fit of exact to modeled quantities, slope=exact/model, 

TP600a2 at t*=105: Drop source terms. 
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z\ = 4Ax z\ = 8Ax 

Model Baseline Random Deterministic Baseline Random Deterministic 

SI 0.879 0.855 0.878 0.752 0.726 0.749 

S ’ I I , ~  0.824 0.787 0.806 0.610 0.583 0.592 

SI,,, 0.866 0.814 0.852 0.619 0.585 0.592 

511,3 0.813 0.745 0.786 0.447 0.445 0.428 

Srrr 0.872 0.844 0.870 0.738 0.711 0.733 

TABLE 4. Slopes from least squares fit of exact to modeled quantities, slope=exact/model, 

TP600a2 at t*=105: Filtered source terms. 

1 
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SGS quantity SP600 TP600a2 SP600 TP600a2 

& = 4 A x  A = 4 A x  d = 8 A x  d = 8 A x  

p (711 - 7kk/3) 0.0513 0.0478 0.0500 0.0456 

P (722 - Tkk/3) 0.0366 0.0362 0.0280 0.0304 

/s (733 - Tkk/3) 0.0396 0.0400 0.0403 0.0414 

PT12 0.0681 0.0660 0.0710 0.0733 

m 1 3  0.0450 0.0436 0.0370 0.0399 

PT23 0.0325 0.0340 0.0284 0.0272 

PCl 0.0885 0.1464 0.0486 0.1375 

P t  0.1121 0.1505 0.1004 0.1576 

P G  0.0925 0.0873 0.0752 0.0757 

P??l - 0.1512 - 0.1464 

. 0.1536 - 0.1598 PT2 

0.0884 - 0.0763 m3 

Average slope 0.0629 0.0871 0.0532 0.0843 

Std. Dev. of slopes 0.0287 0.0501 0.0243 0.0518 

Average correlation 0.25 0.31 0.24 0.31 

- 

- 

TABLE 5. Slopes from least squares fit of SGS quantities to SGS models, Smagorinsky model. 

SP600 SP600 TP600a2 TP600a2 

d = 4 A ~  A = 8 A x  & = = A X  & = 8 A x  

Slope 0.3043 0.3154 0.3096 0.3265 

Correlation 0.81 0.79 0.79 0.77 

TABLE 6. Slopes from least squares fit of SGS quantities to SGS models, Yoshizawa model for 

p k k .  
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SGS quantity SP600 TP600a2 SP600 TP600a2 

E = 4 A x  E = 4 A x  H = 8 A x  E = 8 A x  

PTl1 0.1596 

P722 0.1645 

P733 0.1683 

p 1 2  0.1448 

P713 0.1479 

p 2 3  0.1475 

PCl 0.1488 

PC2 0.1475 

PC3 0.1489 

r?171 

P I 2  

Pq3 

d G S  (q 0.1737 

- 

- 

- 

&s (%) - 

ff& (F)  0.1588 

Average slope 0.1552 

Std. dev. of slopes 0.0099 

Average correlation 0.97 

0.1655 

0.1683 

0.1723 

0.1478 

0.1506 

0.1503 

0.1464 

0.1450 

0.1463 

0.1468 

0.1455 

0.1466 

0.1758 

0.1725 

0.1666 

0.1564 

0.0119 

0.97 

0.1556 

0.1694 

0.1820 

0.1313 

0.1334 

0.1343 

0.1346 

0.1338 

0.1334 

- 

- 

- 

0.1809 

- 

0.1349 

0.1476 

0.0205 

0.92 

0.1629 

0.1756 

0.1870 

0.1339 

0.1354 

0.1367 

0.1345 

0.1324 

0.1319 

0.1346 

0.1327 

0.1322 

0.1828 

0.1784 

0.1580 

0.1499 

0.0216 

0.91 

TABLE 7. Slopes from least squares fit of SGS quantities to SGS models, Gradient model. 
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SGS quantity SP600 TP600a2 SP600 TP600a2 

A=4Aa:  A = 4 A x  d = 8 A ~  A = 8 A x  

PTll 1.5832 

PT22 1.6733 

P 5 3  1.7341 

PT12 1.4629 

p 1 3  1.5728 

PT23 1.5864 

PC1 1.5317 

PC2 1.5340 

PC3 1.6009 

P771 

P772 

m 3  

d G S  (p )  1.8006 

- 

- 

- 

d G S  (PI') - 

d ' G S  1.4381 

Average slope 1.5925 

Std. dev. of slopes 0.1087 

Average correlation 0.94 

1.6691 

1.7390 

1.7954 

1.5364 

1.6212 

1.6472 

1.4812 

1.4754 

1.5378 

1.4888 

1.4850 

1.5422 

1.8430 

1.7918 

1.6450 

1.6199 

0.1263 

0.93 

1.9327 

2.2583 

2.5860 

1.6903 

1.9217 

1.9940 

1.7572 

1.7675 

1.9138 

- 

- 

- 

2.3777 

- 

1.4324 

1.9665 

0.3301 

0.89 

2.0636 

2.3869 

2.6523 

1.7806 

1.9603 

2.0627 

1.7383 

1.7472 

1.8865 

1.7480 

1.7581 

1.8929 

2.4825 

2.4081 

1.8154 

2.0256 

0.3088 

0.88 

TABLE 8. Slopes from least squares fit of SGS quantities to SGS models, Similarity model with 

A = 6. 
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SGS quantity SP600 TP600a2 SP600 TP600a2 

b = 4 A ~  . A = ~ A x  b = 8 A x  d = 8 A z  

PTll 0.6114 

p 2 2  0.6780 

p 3 3  0.7317 

Pn2 0.5508 

p 1 3  0.6522 

pT23 0.6678 

PC1 0.5921 

PC2 0.5969 

0.6611 PC3 

P771 

P772 

m 3  

d G S  ( F )  0.7412 

- 

- 

- 

d G S  (PV) - 

d G S  (Is) 0.4913 

Average slope 0.6340 

Std. dev. of slopes 0.0749 

Average correlation 0.82 

0.6562 

0.7163 

0.7613 

0.5949 

0.6744 

0.7052 

0.5638 

0.5625 

0.6236 

0.5683 

0.5676 

0.6248 

0.7719 

0.7439 

0.6211 

0.6504 

0.0746 

0.82 

0.7143 

0.9460 

1.2425 

0.6384 

0.8130 

0.8991 

0.6444 

0.6438 

0.7833 

- 

- 

- 

0.9442 

- 

0.4246 

0.7903 

0.2168 

0.74 

0.7818 

1.0100 

1.2588 

0.6679 

0.8180 

0.9187 

0.6509 

0.6819 

0.8002 

0.6565 

0.6897 

0.8049 

1.0575 

1.0229 

0.5668 

0.8259 

0.1919 

0.73 

TABLE 9. Slopes from least squares fit of SGS quantities to SGS models, Similarity model with 

A = 2 b .  
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SGS Model SP600 TP600a2 Average slopes equal? 

 AX = 4  AX = 4 

Smagorinsky 0.0629 0.0871 yes 

Gradient 0.1552 0.1564 yes 

Similarity (A = a) 1.5925 1.6199 yes 

Similarity (A = 2A) 0.6340 0.6504 yes 

TABLE 10. Average slopes and t-Test for equality of average slopes, d = 4Ax. 

SGS Model SP600 TP600a2 Average slopes equal? 

 AX = 8 &/Ax = 8 

Smagorinsky 0.0532 0.0843 yes 

Gradient 0.1476 0.1499 yes 

Similarity (A = A) 1.9665 2.0256 yes 

Similarity (A = 2 n )  0.7903 0.8259 yes 

TABLE 11. Average slopes and t-test for equality of average slopes, A = 8Ax. 

SGS Model SP600 SP600 Average slopes equal? 

&/AX = 4 &/AX = 8 

Smagorinsky 0.0629 0.0532 yes 

Gradient 0.1514 0.1532 yes 

Similarity (A = a) 1.5925 1.9665 no 

Similarity (A = 2 a )  0.6340 0.7903 no 

TABLE 12. Average slopes and t-test for equality of average slopes, SP600. 
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SGS Model TP600a2 TP600a2 Average slopes equal? 

AlAx = 4 &/AX = 8 

Smagorinsky 0.0871 0.0843 yes 

Gradient 0.1564 0.1499 yes 

Similarity (A = A) 1.6199 2.0256 no 

Similarity (A = 2A) 0.6504 0.8259 no 

TABLE 13. Average slopes and t-test for equality of avearage slopes, TP600a2. 
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FIGURE 1. Mixing layer configuration 
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FIGURE 2. Homogeneous ( 2 1 , ~ )  plane (a,c,e) averages and (b,d,f) RMS of $1 models, TP600a2 

at t*=105, ,&=4Ax: (a,b) N R = ~ ,  (c,d) N R = ~ ,  (elf) N ~ = 6 4 .  The filtered source term models 

are designated ideal, baseline, random or deterministic according to $J,,,, the model used for the 

unfiltered gas-phase variables. NR is the ratio of the number of actual drops to the number of 

computational drops. (In the figures, the notations [SI and A are used for 3 and d respectively.) 
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FIGURE 3. Slopes from least squares fit of exact to modeled filtered source terms, TP600a2 at 

t*=105: (a,b) S I ,  (c,d) 3111, for (a,c) d = 4Ax and (b,d) d = 8Ax. See caption of figure 2 for 

additional information. 
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FIGURE 4. As for figure 3: (a,b) SIIJ, (c,d) S I I , ~ ,  (e,f) S I I , ~  for (a,c,e) d = 4Ax and 

(b,d,f) d = 8Ax. 
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FIGURE 5 .  Maximal percentage error in filtered source term models, TP600a2 at: (a,b) t*=20, 

(c,d) t*= 45, (e,f) t*=80, (g,h) t*= 105 for (a,c,e,g) = 4Ax and (b,d,f,h) d = 8Ax. See 

caption of figure 2 for additional information. 




