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Abstract 
Over the years, the complexity of space 

missions has dramatically increased with more of 
the critical aspects of a spacecraft’s design being 
implemented in software. With the added 
functionality and performance required by the 
software to meet system requirements, the 
robustness of the software must be upheld. 
Traditional software validation methods of 
simulation and testing are being stretched to 
adequately cover the needs of software 
development in this growing environment. It is 
becoming increasingly difficult to establish 
traditional software validation practices that 
confidently confirm the robustness of the design in 
balance with cost and schedule needs of the project. 
As a result model checking is emerging as a 
powerful validation technique for mission critical 
software. Model Checking conducts an exhaustive 
exploration of all possible behaviors of a software 
system design and as such can be used to detect 
defects in designs that are typically difficult to 
discover with conventional testing approaches. 

Stateflow@ by The Mathworks was used to 
develop the mission critical Fault Protection (FP) 
flight software (FSW) for NASA’s Deep Space 1 
(DS 1) mission. Demonstrating the trend toward 
statechart modeling and auto-code generation, 
Stateflow has also been adopted for the FP FSW 
development on NASA’s Deep Impact project, 
scheduled to launch in 2004. Both missions share a 
core component of FSW for which the design has 
been validated using Spin. Our aim is to validate 
mission-specific components of FSW that are 
specified using statecharts and used in the auto- 
code generation of the final flight code for the 
mission. We establish an automatic translation 

procedure from Stateflow statecharts to Spin for the 
validation of the mission-specific components. To 
guarantee compliance with the generated code our 
translation tool set preserves the Stateflow 
semantics. We are now able to specify and validate 
portions of mission critical software design and 
implementation using exhaustive exploration 
techniques. 

The DS1 Fault Protection System 

System Description 
Fault Protection is autonomous flight software 

that provides the robustness and autonomy needed 
to ensure survival of a space mission in the event of 
detected on-board failures. 

The DS 1 Fault Protection (FP) software 
architecture consists of three main components: the 
FP Engine, Monitors & Responses. These three 
components work together to notify the ground that 
a fault has occurred, determine the appropriate fault 
response(s), and orchestrate the execution of 
various responses. 

Distributed throughout the flight software, the 
FP Monitors are designed to detect the symptoms 
of hardware and software failures. They perform 
symptom diagnosis that includes limitlpersistence 
checking on the reported symptom. 

The F’P Engine services fault declaration by 
mapping symptoms to faults. The use of RED and 
GREEN status flags prevent the re-triggering of 
faults once they are detected and a response is in 
progress. The Engine also manages multiple 
message queues of different priorities to serialize 
the handling of faults, commands, requests, etc. 
The Engine services response execution by 
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mapping faults to responses. Only one response 
may execute at a time and there are separate queues 
for interruptible and non-interruptible responses. 
Interruption of an executing response is handled via 
a “waypoint” mechanism. This works as follows. 

If an interrupting response is triggered while a 
non-interrupting response is in progress, the non- 
interrupting response is temporarily suspended until 
all interrupting responses have run to completion. 
Triggered responses go into one of two queues: the 
interrupting queue, and the non-interrupting queue. 
When each response comes up for execution, the 
current status of the monitor is polled and the 
response is executed only if the triggering monitor 
is still RED, otherwise the response is aborted. 

A non-interrupting response is interruptible 
only at predetermined “waypoints” in the statechart. 
When execution of a non-interrupting response gets 
to a waypoint, a check is performed to see if there 
are responses in the interrupting queue. Only when 
all responses, if any, in the interrupting queue have 
executed to completion, does the non-interrupting 
response continue. After successful response 
execution, the Engine clears appropriate fault flags. 

The FP Responses carefully command the 
spacecraft for successful fault recovery. Most 
responses for DS 1 are two tiered. The first level of 
response either swaps to a backup device if 
available, or power cycles the faulty component 
while a fault that persists after the first tier response 
action may require spacecraft entry into one of three 
Standby Modes: SUN-STANDBYSSA, 
SUN-STANDBY-SRU, or EARTH-STANDBY. 

spacecraft into a power positive (e.g., solar arrays 
pointed to the sun) and communicative (e.g., 
antenna pointed toward Earth) state. The entry 
logic for each of these modes ensures that the 
required hardware is available to successfully enter 
that mode. For example SUN-STANDBYSSA 
requires that the sun sensor assembly (SSA) 
complete a successful sun search. If the SSA has 
failed, thereby causing the sun search to “timeout”, 
the Standby logic will direct the spacecraft to 
SUN-STANDBY-SRU mode, which does not 
depend on the SSA to get the spacecraft power 
positive. 

Successful entry into a Standby Mode puts the 

System Implementation 

generation for the spacecraft system-level fault 
protection software. This was accomplished using 
Stateflow69 and Stateflow Coder [RNC99]. This 
approach enforced standard diagrammatic 
conventions for representing statecharts and the 
resulting logic, thereby allowing systems engineers, 
rather than software engineers, design and 
implement the system. The mission-specific 
elements of the FP design, the Monitors and 
Responses, were developed in this manner. 

DS 1 chose to implement model-based code- 

Advancing Automation to Verification 
The implementation of the Standby modes as a 

FP Response, for example, is complex. The 
statechart is detailed and contains several sub-charts 
with executions that are dependent on certain 
conditions and configurations of the spacecraft. It 
is an interesting challenge to validate such a system. 
Complications of response execution dependencies 
on resources make model checking an attractive 
method for this validation. 

We chose to use the Spin model checker 
developed at Bell Laboratories by Gerard 
Holzmann for our verification effort [Ho197]. Spin 
accepts model representations of software systems 
in the language Promela. We desired a method that 
allowed generation of Promela from the same 
modeling source that produces the flight code, i.e., 
the statechart. Such an automated translation 
process more efficiently utilizes human resources 
and avoids human errors that are potentially 
introduced via manual coding. Adding a formal 
methods verification technique such as model 
checking improves the FP software development 
effort by providing a way to thoroughly test that the 
system does not violate its requirements and high- 
level design imperatives. The result that satisfies 
these desires and objectives is the automated 
translation method and tool set that we describe. 

Our automated translation method is applied to 
the FP Response statecharts. Spin requires a closed 
system so we wrap an environment model around 
the translated FP Response statecharts. The 
environment model consists of an Abstract 
Spacecraft Model, which is automatically produced 
via a separate translation, and an Abstract FP 
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Engine, which is hand-written Promela. These 
environment model components will be described 
in detail later. 

Stateflow Description [SFUG] 

What Is a Finite State Machine? 

representation of an event-driven (reactive) system. 
In an event-driven system, the system transitions 
from one state (mode) to another prescribed state, 
provided that the condition defining the change is 
true. 

A finite state machine (FSM) is a 

Stateflow Representations 

machine notation established by David Hare1 
[Har87]. Using Stateflow, you create Stateflow 
diagrams. A Stateflow diagram is a graphical 
representation of a finite state machine where states 
and transitions form the basic building blocks of the 
system. You can also represent flow (stateless) 
diagrams using Stateflow. Additionally, Stateflow 
enables the representation of hierarchy, and 
parallelism. Hierarchy enables you to organize 
complex systems by defining a paredoffspring (or 
child) object structure. For example, you can 
organize states within other higher-level states. A 
system with parallelism can have two or more 
orthogonal states active at the same time. 

Stateflow uses a variant of the finite state 

Notations 
A notation defines a set of objects and the rules 

that govern the relationships between those objects. 
Stateflow notation provides a common language to 
communicate the design information conveyed by a 
Stateflow diagram. 

Semantics 
Semantics describe how the notation is 

interpreted and implemented. A completed 
Stateflow diagram illustrates how the system will 
behave. A Stateflow diagram contains actions 
associated with transitions and states. The 
semantics describe in what sequence these actions 
take place during Stateflow diagram execution. 
Knowledge of the semantics is important to make 

sound Stateflow diagram design decisions for code 
generation. Different use of notations results in 
different ordering of simulation and generated code 
execution. 

Stateflow Diagram Objects 
This section describes many of the graphical 

and non-graphical objects in a Stateflow diagram 
along with the concepts that relate them. 

A state describes a mode of an event-driven 
system. The activity or inactivity of the states 
dynamically changes based on events and 
conditions. Every state has a parent. In a Stateflow 
diagram consisting of a single state, that state’s 
parent is the Stateflow diagram itself (also called 
the Stateflow diagram root). States have labels that 
can specify actions executed in a sequence based 
upon action type. The action types are entry, during, 
exit, and on. Stateflow provides two types of states: 
parallel (AND) and exclusive (OR) states. You 
represent parallelism with AND (parallel) states. 
Exclusive (OR) states are used to describe modes 
that are mutually exclusive. 

cases, links one object to another. One end of a 
transition is attached to a source object and the 
other end to a destination object. The source is 
where the transition begins and the destination is 
where the transition ends. A transition label 
describes the circumstances under which the system 
moves from one state to another. It is always the 
occurrence of some event that causes a transition to 
take place. 

Events drive the Stateflow diagram execution 
but are non-graphical objects and are thus not 
represented directly in a Stateflow chart. All events 
that affect the Stateflow diagram must be defined. 
The occurrence of an event causes the status of the 
states in the Stateflow diagram to be evaluated. The 
broadcast of an event can trigger a transition to 
occur or can trigger an action to be executed. 
Events are broadcast in a top-down manner starting 
from the event’s parent in the hierarchy. 

Hierarchy enables you to organize complex 
systems by defining a parent and offspring object 
structure. A hierarchical design usually reduces the 
number of transitions and produces neat, 
manageable diagrams. Stateflow supports a 

A transition is a graphical object that, in most 
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hierarchical organization of both charts and states. 
Charts can exist within charts. A chart that exists in 
another chart is known as a subchart. Similarly, 
states can exist within other states. Stateflow 
represents state hierarchy with superstates and 
substates. A transition out of a higher level, or 
superstate, also implies transitions out of any active 
substates of the superstate. Transitions can cross 
superstate boundaries to specify a substate 
destination. If a substate is active its parent 
superstate is also active. 

specifying that a transition occurs, given that the 
specified expression is true. 

Actions take place as part of Stateflow 
diagram execution. The.action can be executed 
either as part of a transition from one state to 
another or based on the activity status of a state. 
Transitions ending in a state can have condition 
actions and transition actions. 

states that can be active at the same time. The 
activity of each parallel state is essentially 
independent of other states. You represent 
parallelism in Stateflow by specifying parallel 
(AND) state decomposition. Parallel (AND) states 
are displayed as dashed rectangles. 

Default transitions specify which exclusive 
(OR) state is to be active when there is ambiguity 
between two or more exclusive (OR) states at the 
same level in the hierarchy. 

Connective junctions are decision points in 
the system. A connective junction is a graphical 
object that simplifies Stateflow diagram 
representations and facilitates generation of 
efficient code. Connective junctions provide 
alternative ways to represent desired system 
behavior. 

A condition is a Boolean expression 

A system with parallelism has two or more 

Translation Method & Design 
The authors of Stateflow adopted the graphical 

notation of Statecharts as proposed by D. Harel in 
[3] but designed a different semantics to this 
notation. The Statemate tool supports the original 
semantics developed by D. Harel and there are 
some advances that extend Statemate specified 
designs to model checking facilities [MLSH99]. 

The following list illustrates the differences in 
semantic design between Stateflow and Statemate 
Statecharts, which makes clear that we can not use 
Statemate-based tools for Stateflow Statechart 
verification. 

In Stateflow semantics there is at most one 
event active at a time. In Statemate semantics 
any finite number of events are allowed. 

Emitting an event in Stateflow semantics means 
to pass control to the receiver chart of the event 
just in the moment of emitting the event. In 
Statemate semantics events are collected until 
the end of the step and then broadcast to the 
entire chart. 

In Stateflow semantics the execution order of 
transition segments (they constitute transitions) 
is determined by their graphical placement: 
outgoing transition segments of one state are 
considered for execution in clockwise order. 
Hence, in Stateflow semantics it is not possible 
to select one enabled transition non- 
deterministically, as it is allowed in Statemate. 

In Stateflow the execution order within an 
AND-state is determined by the graphical 
placement of the AND-composed charts. In 
Statemate all AND-states are executed 
simultaneously. 

In Stateflow semantics the effect of changing 
variables takes place immediately. In Statemate 
semantics a variable change takes effect only at 
the end of the step. 

We propose a new format, hierarchical 
sequential automata (HSA), that accurately reflects 
Stateflow semantics. 

The translation idea is to associate to each 
Statechart a hierarchical sequential automaton that 
is semantically equivalent to the source Statechart. 
A hierarchical sequential automaton consists of a 
finite set of cooperating sequential automata that 
can be implemented as parallel processes in 
Promela (consider Figure 1). For the two-step 
translation the diagram in Figure 1 has to commute. 
Therefore we require an equivalence notion 
between the semantics of the source Statechart, 
intermediate HSA and the resulting Promela code 
(e.g. bisimulation). 
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Statechart HSA + Promela 

i i i 
Semantics = Semantics = Semantics 

Figure 1. Two step translation of Statecharts 

Here the translation of Statecharts to HSA and 
the semantics of HSA have to be defined using the 
same rigorous methods as was done by E. Mikk in 
[MLSH99, MikkOO]. This will be considered in 
further work. 

The general idea of the translator-generated 
code is the following. There will be one Promela 
process for each OR-state (which corresponds to 
one automaton in HSA) such that the process 
implements its OR-state. Statechart states, events 
and variables are encoded as Promela variables and 
Promela processes change the values of these 
variables in order to simulate state changes, event 
generation and variable changes according to the 
semantics of Stateflow. The observable behavior is 
defined with respect to the variables representing 
Statecharts states, events and variables. These ideas 
are very close to the ones in the paper on translating 
Statemate Statecharts to Promela [MLSH99]. 

In this paper we discuss three additional topics 
beyond semantics and translation definition that are 
inevitable for practical verification setup: 

How to achieve a closed model for the code 
generated from the FP response specification in 
Statecharts? Here we manually extend the 
automatically generated code by user-written 
Promela code, which will model the 
environment. Both the model of the 
environment and its integration with the 
generated code must yield a closed system 
which is a valid model of the real system. 

What kinds of verification conditions are 
needed for the analysis of control systems 
designed in Stateflow statecharts? Here we 
introduce the notion of a responsive controller 
that eventually reacts to each environment 
input. 

We argue that some features of the Stateflow 
semantics might give rise to design faults that 

are hard to detect because the semantics 
determine one specific execution order. We 
compensate for this by changing the translation 
of HSA to Promela such that every execution 
order is considered when a property of interest 
is verified. Formally speaking, this change is a 
generalization of the original semantics that 
means that we consider the original execution 
order but alternative execution orders as well. 

Integration of user written Promela code with 
translated code 

In this section we consider the flow of control 
between user-written Promela code and the 
translated code. The motivation is to allow user- 
written Promela code to model the environment of 
the translated code such that these two parts 
together constitute a closed system. We consider 
the following issues: 

The interface of translated code that allows the 
user-written code to pass control and data to the 
translated code. 

How to ensure mutually exclusive flow of 
control between user-written code and the 
translated code: whenever translated code is 
executed the user-written code waits for this 
execution to be completed and vice versa. Here 
we adopt the ideas of the synchrony hypothesis: 
the controller program (here represented by the 
translated FP response specification) reacts 
infinitely faster than the environment ("zero- 
time") and therefore the environment can be 
considered as "waiting" for the controller to 
complete. This construction is valid only if the 
controller program is responsive; i.e. eventually 
reacts to each environment input. We will 
discuss how we verify responsiveness. 

The definition of the so-called execution step of 
the translated code, i.e. the set of translations 
and actions taken and executed while active 
before the flow of control is passed back to the 
user-written code. 

The interface of translated code 
The translator generates for the given 

Statechart model the following Promela definitions. 
For every event of this model the translation 
creates a boolean variable in Promela code such 

. 
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that when the variable is true the event is 
considered to be available in the current step. 
Since at most one event can be available at a 
time we can, altematively, associate the 
presence of events to non-zero values of an 
integer variable (assuming the value 0 to 
represent "no events available"). This 
alternative approach is a memory optimization 
for verification runs. In the following treatment 
we assume that we have a boolean variable for 
each event. 

For every boolean or integer variable, that is 
read or written by conditions and actions of our 
model, the translation creates the respective 
variable in the Promela code. User-written 
Promela code can access these variables for 
reading and writing. 

For every OR-state there is one Promela 
process: execute-state that implements the 
states and transitions of this OR-state. 

For passing control between the above- 
mentioned Promela processes there is a notion of 
top-down activation and bottom-up notification as 
explained in the following. There are activation 
and notification conditions for each Promela 
process of the generated model. Initially all 
Promela processes are waiting for their respective 
activation conditions to be satisfied. When this 
condition gets satisfied (e.g. set by the 
environment) the Promela process executes its 
respective code. For example, in the case of 
execute-state an enabled outgoing transition is 
taken. After that the process sets the notification 
condition of its activator and returns to the state of 
waiting for activation. 

The following example shows the use of 
activation and notification for the implementation 
of the example in Figure 2. 

#define WAITACT(st) st?l 
#define ACTIVATE(st) st!l; 
#define RESET-NOTICE(n) n=O; 
#define INC-NOTICE(n) n++; 
#define WAITNOTICE(n, i )  (n==i) 

active proctype example-chart() 
{ 
loop: atomic{ 
WAIT-ACT(act-example-chart) - > 

:: cur-st-example-chart= =state-init -> 
if 

if 
:: (event-ACT) -> { 

cur-st-example-chart =state-active; 
/* activate sub-state */ 
cur-st-active-chart=statefirst-attempt; 

I 
:: else -> { 

skip; 
/* no during actions */ 

I 
fi; 

if 
:: cur-st-example-chart= =state-active -> 

:: (event-ERR) -> { 

cur-st-active-chart =notactive-example-state; 
cur-st-example-chart=state-end; 

I 
:: else -> { 

/*pass control to sub-state */ 
RESET-NO TICE(not1jication-exampl e-chart), 

ACTIVA TE(act-example-state); 

WAIT-NOTICE(notification-example-chart, I) - > 
I 
fi; 
:: cur-st-example-chart= =state-end - > { 

skip; 
/* no outgoing transitions */ 
/* no sub-states */ 

I 
fi; 
got0 loop; 

I 

Figure 2. Activation & Notification 

6 



Coding conventions for integration of user- 
written Promela code with translated code 

The coding conventions for integration of 
translated code with user-written Promela code are 
the following: 

1. The user-written Promela code may set values 
of event, boolean and integer variables. 

2. The user-written Promela code may pass 
control to the translated code execute-root by 
setting the activation condition of this function. 
Similarly, after activation the user-written 
Promela code waits for the corresponding 
notification condition to be satisfied. This is 
done using the pattern of the previous example. 

Implemented in this way the flow of control 
between the user-written Promela code and the 
translated code guarantees mutual exclusiveness in 
their execution. While user-written code is 
executed the translated code waits for an activation 
condition to be satisfied and while the translated 
code is executed the user-written code waits for the 
notification to be satisfied. 

Next we consider in more detail under which 
condition the control is passed back from the 
translated code to the user-written code. 

Maximum step approach 
We can distinguish between two kinds of 

behavior in the Stateflow model 

1. Execution of actions as a result of taking 
transitions, or executing state actions associated 
with exiting and entering of states or to the 
situation where the control remains in the state 
it was in before execution (during actions). 

2. No execution of actions because there are no 
enabled transitions and the set of actions 
associated with the entering and exiting of 
states or during action set is empty. 

Here we follow the so-called maximum step 
approach: the control is passed back to the user- 
written code only if there is no execution of actions 
in the current step as described in point 2. 

We detect this state as follows: we define a 
new boolean variable action-executed and initialize 
it to false. The intention is that whenever an action 
is executed, this variable is set to true. When the 
function execute-root is activated, it initializes this 

variable to false. When the function execute-root 
completes the execution as described above, it tests 
the value of action-executed: when the value is 
true, the function resets the variable 
action-executed and continues its execution by 
activating the function corresponding to its direct 
active child. When the value isfalse, the 
notification condition of the caller of execute-root 
is established and the function execute-root moves 
to the waiting state for activation. 

Responsive control program 

interaction with the environment, e.g., in the case of 
Statecharts by receiving events from the 
environment and by responding to them. Since the 
FF responses designed in Stateflow are playing the 
role of the controller in a reactive system we are 
interested in verifying that the Stateflow model 
indeed interacts with its environment infinitely. We 
are interested in the verification condition that 
expresses the responsiveness property of the control 
program. A non-responsive controller might have 
design faults of the following kind: 

Reactive systems are characterized by infinite 

The controller program loops without 
responding to the environment and without 
accepting new inputs from the environment. 

The controller program executes no actions in 
response to the environment input and does not 
change its state. 

As we learned in Section "Integration of user 
written Promela code with translated code" the 
concepts of activation of the controller and 
notification of the activator exist. We call a control 
program responsive if every execution passes the 
state where the notification condition is satisfied 
infinitely often. This property can be expressed as a 
formal Linear Temporal Logic (LTL) property and 
can be verified using Spin. 

Verification of all execution orders 

execution order of transitions; this influences the 
execution order of actions associated with states, 
state activation and deactivation. One major benefit 
of graphical representations like Statecharts is that 
even complex systems can be described in a clear 

The semantics of Statecharts determine the 

7 



way that is intuitive to both the reader and the 
designer of the specification. In the following we 
present some counterintuitive examples that 
demonstrate caveats to the designer and reader of 
the specification. We think these particular 
semantic features might give rise to human error. 
To compensate for this, we propose a more general 
verification that is not sensitive to these features of 
the semantics. 

Outgoing transition segments of one state 
Please consider the example in Figure 3. 

Assume that in both charts state A is active and we 
consider its outgoing transitions. Due to clockwise 
execution order, the left Statechart moves from state 
A to state B but the right chart moves from state A 
to state C. The other transitions next in the clock- 
wise execution order are not considered at all. 

1 

Figure 3. Different results of clockwise execution 
order 

This example shows that a small change in 
graphical representation of the design idea might 
decide between a design fault and sound design. 
For rigorous verification we propose to change the 
semantics of Statecharts: instead of clockwise 
execution order we use non-deterministic execution 
order of outgoing transitions of one state. For the 
charts in Figure 2 this means that their behavior is 
equivalent: from state A one non-deterministically 
moves to state B or state C. 

Execution order of AND-composed states 
Design faults related to execution order might 

rise from the graphically determined execution 
order of AND-states are well. Consider the charts 
in Figure 4. The left chart executes its AND-states 
in the order ABDC but the right chart executes 
order ABCD; here the mutual position of state C 
and D make the difference. Note that if state B 
were one pixel higher than state A in the graphical 

representation then the execution order of A & B 
would be swapped in both charts. 

Figure 4. Example of AND-composition 

Here, too, we propose to change the semantics 
for rigorous verification such that every possible 
execution order of AND-states is examined. 

Backtracking order 
Finally we consider backtracking sensitive 

execution order. Please consider the chart in Figure 
5. Assume that condition C22 is false and all other 
conditions are true; assume that state A is active 
initially. Clock-wise execution order determines 
that transition labeled with C2 is evaluated and 
taken. Then C22 is evaluated to false which means 
that the execution has to backtrack [ 11. If the 
backtracking strategy considers C21 first, state D 
becomes active. This strategy is implemented in 
Stateflow. However, if the backtracking strategy 
considers C1 , then the execution moves finally to 
state C. 

1 

Figure 5. Example with backtracking behavior 

Here, too, we propose to change the semantics 
for rigorous verification such that every possible 
backtracking order is examined. 
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Components of the translation tool set 

tool set that achieve the translation presented in the 
previous Sections. There are three core programs in 
the translation tool set: SfParse, sf2hsa and hsa2pr. 
SfParse takes a Stateflow model file (.mdl) as input 
and parses from the statechart the relevant (non- 
graphical) data for our translation. 

We now describe the various programs of the 

The sf2hsa program performs the translation of 

machine models between Stateflow and the Spin 
model checker. 

The hsa2pr program translates one hierarchical 
sequential automaton to Promela, the input 
language of the Spin model checker. A support 
program, HSAMerge, allows multiple HSA files to 
be merged so that their translation produces an 
integrated Promela model of the input automata. 

the parsed data set into the HSA format. As Prototyping for Mission Critical FSW 
previously mentioned, HSA is an intermediate 
format that offers a small set of syntactical elements 
for defining the syntax and semantics of the 
powerful language of statecharts. It was developed 
primarily to promote the exchange of finite state 

Figure 6 illustrates the Translation Tool Set 
and its interfaces with the closed-loop system 
components that maximize the Spin model checking 
results of our DS 1 FP system design. 

Figure 6. System Diagram for Fault Protection Model Checking Prototype 

DS 1 FF design. Many of these charts are simple (5 
or less basic states and transitions), yet some are 
quite complex (e.g., Standby - mentioned earlier, 
and the DS 1 Launch sequence). 

As an example demonstration of our 
prototyping technique we first translate two FP 
response statecharts: detumble & power-config, 
which is a subchart of detumble. The detumble 

The FP Responses.. .the Test Article 
We seek to demonstrate our approach on the 

set of DS 1 Fault Protection Responses (described 
earlier) by translating each response .mdl file from 
Stateflow to HSA and then to Promela with our tool 
set. There are 25 unique response statecharts in the 
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response performs the critical activity of stabilizing 
the spacecraft after separation from the launch 
vehicle or after any entry into a Standby mode 
where the flight computer is rebooted and inertial 
reference is lost. The power-config response 
performs power-cycling (off/on) for devices 
selected by the calling response. In the case of 
detumble, power-config power cycles the Inertial 
Measurement Unit (MU) and the Propulsion Drive 
Electronics (PDE) to clear any faults in the 
hardware. Next we describe the environment model 
that we create to close the loop around the FP 
responses. 

The Closed Loop Environment 
To properly verify the FP Responses we 

provide an interactive closed-loop environment that 
emulates the response execution actions on the 
spacecraft. We introduce two abstract models; one 
of the FP Engine, the central component of the FP 
architecture and interface between the FP 
Responses and the spacecraft system, and one of the 
spacecraft itself. We abstract only those features of 
the FP Engine and spacecraft that are necessary for 
proper FP Response execution. 

The Abstract FP Engine is hand-coded in 
Promela. It is primarily responsible for the non- 
deterministic scheduling execution of the FP 
responses. The following FP Engine features are 
also supported in our abstraction: . Waypoints for permitted response 

. Tiered response execution . Internal variable management 

We abstract away the features that are not 
required to support Fp response validation in our 
system such as symptom to fault mapping and fault 
to response mapping. 

The abstract FP Engine provides for the 
distinction of 3 priority levels among executing 
responses. They are: 

interruption 

Interruptible responses (low priority) . Non-interruptible responses (medium) . Ground-issued commands (high) 

The following sample Promela segment selects 
the response to be executed based on these 
priorities. 

active proctype fp-engine() 
{ pid r; 

do 
:: d-step { 

running c 0 -> 
if 
:: nempty(high) -> high?r 
:: else -> 

if 
:: nempty(medium) -> medium?r 
:: else -> 

if 
:: nempty(1ow) -> low?r 
:: else -> r = -1 

fi fi fi; 
running = r 

1 
od 

1 

We chose to capture the Abstract Spacecraft 
Model specification such that partial translation via 
HSA is permitted. The spacecraft model 
information consisting of variables, transitions, 
states, their hierarchy, and default status is captured 
in a simple tabular notation and formatted into HSA 
using a custom Per1 script. Hence we are now able 
to auto-translate the spacecraft model from the 
intermediate HSA format to Promela using the 
hsa2pr program. This is a powerful extension to the 
original translation path directly from Stateflow- 
specified designs. 

power-config we specify the environment model 
based on the commands that are issued to the 
spacecraft as a result of response execution. These 
commands become the transition events between 
components of the spacecraft model. For example, 
when the power-config response issues the 
command IMUPOWER-OFF it declares the 
following transition event in the spacecraft model: 

For our first example including detumble and 

IMU POWER OFF IMU-On 
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We specify hierarchy by indicating any 
parendchild relationships between components of 
the spacecraft, and we identify the default states of 
all components. We prove our technique for the 
detumble example to pave the way for specifying 
the full abstract spacecraft model that can close the 
loop around the entire set of DS 1 FP responses. 

Next Steps - Integration & Validation 
with Spin 

The Promela model fragments that are 
generated from Stateflow and by the user can be 
integrated into a single verification model with the 
help of the FeaVer system [8]. For the generated 
models, we rely on the availability of a newly 
extended version of the Spin model checker (Spin 
version 4) that allows for the use of embedded C 
code fragments inside Promela code. Via this 
mechanism, the model checking code can be linked 
with original C code libraries that implement 
elements of the flight software that can be executed 
as atomic functions during the model checking 
exercise. 

We are in the process of building a library of 
correctness properties for this code, from which we 
plan to derive formal Spin never claims that can 
then be verified mechanically by the model checker. 
The final system should allow us to check the 
Stateflow specifications within their intended 
context with a thoroughness that is virtually 
impossible to achieve by other means. 

Once the design is validated we will also 
investigate how to correlate the validated design to 
the real implementation. The open issues to be 
investigated here are: 

preserve the semantics of Statecharts? 

conservative abstraction of the real system, i.e., are 
all errors of the design reproducible in the 
implementation? 

implementation and of the system design in future 
work. 

1. Does the code generation of Stateflow 

2. Is our verification model (closed system) a 

We will report on the validation of the 

Technology Infusion Plans 
A JPL proposal has been submitted to apply 

our translation tools & methods for Spin model 
checking of the following state-based systems: 

Deep Impact (DI) FP Responses; design 
implemented in Stateflow; DI launches in 
January 2004 
Attitude Control Subsystem (ACS) Mode 
Commander; subsystem component used in 
many JPL spacecraft designs 

Mars Exploration Rover (MER) Surface 
Operations Behaviors (comprised of Activity 
Constraint Monitor & Resource Arbiter 
components); new & complex system to 
achieve mission goals; MER launches in June 
2003, and arrives at Mars in January 2004. 

Mission Data System (MDS) Threading Policy; 
portion of execution architecture that 
coordinates software activities among threads 
with allocated resources (time, CPU utilization, 
message bandwidth, etc.); a revolutionary 
software architecture under development for 
future JPL flight missions including Mars 
Smart Lander, planned for launch in 2009. 
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