
VALIDATION OF MISSION CRITICAL SOFTWARE DESIGN AND
IMPLEMENTATION USING MODEL CHECKING

Paula J. Pingree
Jet Propulsion Laboratory

Pasadena, CA

Erich Mikk
Erlangen, Germany

Gerard J. Holzmann
Margaret H. Smith

Dennis Dams
Bell Laboratories
Murray Hill, NJ

Abstract
Over the years, the complexity of space

missions has dramatically increased with more of
the critical aspects of a spacecraft’s design being
implemented in software. With the added
functionality and performance required by the
software to meet system requirements, the
robustness of the software must be upheld.
Traditional software validation methods of
simulation and testing are being stretched to
adequately cover the needs of software
development in this growing environment. It is
becoming increasingly difficult to establish
traditional software validation practices that
confidently confirm the robustness of the design in
balance with cost and schedule needs of the project.
As a result model checking is emerging as a
powerful validation technique for mission critical
software. Model Checking conducts an exhaustive
exploration of all possible behaviors of a software
system design and as such can be used to detect
defects in designs that are typically difficult to
discover with conventional testing approaches.

Stateflow@ by The Mathworks was used to
develop the mission critical Fault Protection (FP)
flight software (FSW) for NASA’s Deep Space 1
(DS 1) mission. Demonstrating the trend toward
statechart modeling and auto-code generation,
Stateflow has also been adopted for the FP FSW
development on NASA’s Deep Impact project,
scheduled to launch in 2004. Both missions share a
core component of FSW for which the design has
been validated using Spin. Our aim is to validate
mission-specific components of FSW that are
specified using statecharts and used in the auto-
code generation of the final flight code for the
mission. We establish an automatic translation

procedure from Stateflow statecharts to Spin for the
validation of the mission-specific components. To
guarantee compliance with the generated code our
translation tool set preserves the Stateflow
semantics. We are now able to specify and validate
portions of mission critical software design and
implementation using exhaustive exploration
techniques.

The DS1 Fault Protection System

System Description
Fault Protection is autonomous flight software

that provides the robustness and autonomy needed
to ensure survival of a space mission in the event of
detected on-board failures.

The DS 1 Fault Protection (FP) software
architecture consists of three main components: the
FP Engine, Monitors & Responses. These three
components work together to notify the ground that
a fault has occurred, determine the appropriate fault
response(s), and orchestrate the execution of
various responses.

Distributed throughout the flight software, the
FP Monitors are designed to detect the symptoms
of hardware and software failures. They perform
symptom diagnosis that includes limitlpersistence
checking on the reported symptom.

The F’P Engine services fault declaration by
mapping symptoms to faults. The use of RED and
GREEN status flags prevent the re-triggering of
faults once they are detected and a response is in
progress. The Engine also manages multiple
message queues of different priorities to serialize
the handling of faults, commands, requests, etc.
The Engine services response execution by

1

mapping faults to responses. Only one response
may execute at a time and there are separate queues
for interruptible and non-interruptible responses.
Interruption of an executing response is handled via
a “waypoint” mechanism. This works as follows.

If an interrupting response is triggered while a
non-interrupting response is in progress, the non-
interrupting response is temporarily suspended until
all interrupting responses have run to completion.
Triggered responses go into one of two queues: the
interrupting queue, and the non-interrupting queue.
When each response comes up for execution, the
current status of the monitor is polled and the
response is executed only if the triggering monitor
is still RED, otherwise the response is aborted.

A non-interrupting response is interruptible
only at predetermined “waypoints” in the statechart.
When execution of a non-interrupting response gets
to a waypoint, a check is performed to see if there
are responses in the interrupting queue. Only when
all responses, if any, in the interrupting queue have
executed to completion, does the non-interrupting
response continue. After successful response
execution, the Engine clears appropriate fault flags.

The FP Responses carefully command the
spacecraft for successful fault recovery. Most
responses for DS 1 are two tiered. The first level of
response either swaps to a backup device if
available, or power cycles the faulty component
while a fault that persists after the first tier response
action may require spacecraft entry into one of three
Standby Modes: SUN-STANDBYSSA,
SUN-STANDBY-SRU, or EARTH-STANDBY.

spacecraft into a power positive (e.g., solar arrays
pointed to the sun) and communicative (e.g.,
antenna pointed toward Earth) state. The entry
logic for each of these modes ensures that the
required hardware is available to successfully enter
that mode. For example SUN-STANDBYSSA
requires that the sun sensor assembly (SSA)
complete a successful sun search. If the SSA has
failed, thereby causing the sun search to “timeout”,
the Standby logic will direct the spacecraft to
SUN-STANDBY-SRU mode, which does not
depend on the SSA to get the spacecraft power
positive.

Successful entry into a Standby Mode puts the

System Implementation

generation for the spacecraft system-level fault
protection software. This was accomplished using
Stateflow69 and Stateflow Coder [RNC99]. This
approach enforced standard diagrammatic
conventions for representing statecharts and the
resulting logic, thereby allowing systems engineers,
rather than software engineers, design and
implement the system. The mission-specific
elements of the FP design, the Monitors and
Responses, were developed in this manner.

DS 1 chose to implement model-based code-

Advancing Automation to Verification
The implementation of the Standby modes as a

FP Response, for example, is complex. The
statechart is detailed and contains several sub-charts
with executions that are dependent on certain
conditions and configurations of the spacecraft. It
is an interesting challenge to validate such a system.
Complications of response execution dependencies
on resources make model checking an attractive
method for this validation.

We chose to use the Spin model checker
developed at Bell Laboratories by Gerard
Holzmann for our verification effort [Ho197]. Spin
accepts model representations of software systems
in the language Promela. We desired a method that
allowed generation of Promela from the same
modeling source that produces the flight code, i.e.,
the statechart. Such an automated translation
process more efficiently utilizes human resources
and avoids human errors that are potentially
introduced via manual coding. Adding a formal
methods verification technique such as model
checking improves the FP software development
effort by providing a way to thoroughly test that the
system does not violate its requirements and high-
level design imperatives. The result that satisfies
these desires and objectives is the automated
translation method and tool set that we describe.

Our automated translation method is applied to
the FP Response statecharts. Spin requires a closed
system so we wrap an environment model around
the translated FP Response statecharts. The
environment model consists of an Abstract
Spacecraft Model, which is automatically produced
via a separate translation, and an Abstract FP

2

Engine, which is hand-written Promela. These
environment model components will be described
in detail later.

Stateflow Description [SFUG]

What Is a Finite State Machine?

representation of an event-driven (reactive) system.
In an event-driven system, the system transitions
from one state (mode) to another prescribed state,
provided that the condition defining the change is
true.

A finite state machine (FSM) is a

Stateflow Representations

machine notation established by David Hare1
[Har87]. Using Stateflow, you create Stateflow
diagrams. A Stateflow diagram is a graphical
representation of a finite state machine where states
and transitions form the basic building blocks of the
system. You can also represent flow (stateless)
diagrams using Stateflow. Additionally, Stateflow
enables the representation of hierarchy, and
parallelism. Hierarchy enables you to organize
complex systems by defining a paredoffspring (or
child) object structure. For example, you can
organize states within other higher-level states. A
system with parallelism can have two or more
orthogonal states active at the same time.

Stateflow uses a variant of the finite state

Notations
A notation defines a set of objects and the rules

that govern the relationships between those objects.
Stateflow notation provides a common language to
communicate the design information conveyed by a
Stateflow diagram.

Semantics
Semantics describe how the notation is

interpreted and implemented. A completed
Stateflow diagram illustrates how the system will
behave. A Stateflow diagram contains actions
associated with transitions and states. The
semantics describe in what sequence these actions
take place during Stateflow diagram execution.
Knowledge of the semantics is important to make

sound Stateflow diagram design decisions for code
generation. Different use of notations results in
different ordering of simulation and generated code
execution.

Stateflow Diagram Objects
This section describes many of the graphical

and non-graphical objects in a Stateflow diagram
along with the concepts that relate them.

A state describes a mode of an event-driven
system. The activity or inactivity of the states
dynamically changes based on events and
conditions. Every state has a parent. In a Stateflow
diagram consisting of a single state, that state’s
parent is the Stateflow diagram itself (also called
the Stateflow diagram root). States have labels that
can specify actions executed in a sequence based
upon action type. The action types are entry, during,
exit, and on. Stateflow provides two types of states:
parallel (AND) and exclusive (OR) states. You
represent parallelism with AND (parallel) states.
Exclusive (OR) states are used to describe modes
that are mutually exclusive.

cases, links one object to another. One end of a
transition is attached to a source object and the
other end to a destination object. The source is
where the transition begins and the destination is
where the transition ends. A transition label
describes the circumstances under which the system
moves from one state to another. It is always the
occurrence of some event that causes a transition to
take place.

Events drive the Stateflow diagram execution
but are non-graphical objects and are thus not
represented directly in a Stateflow chart. All events
that affect the Stateflow diagram must be defined.
The occurrence of an event causes the status of the
states in the Stateflow diagram to be evaluated. The
broadcast of an event can trigger a transition to
occur or can trigger an action to be executed.
Events are broadcast in a top-down manner starting
from the event’s parent in the hierarchy.

Hierarchy enables you to organize complex
systems by defining a parent and offspring object
structure. A hierarchical design usually reduces the
number of transitions and produces neat,
manageable diagrams. Stateflow supports a

A transition is a graphical object that, in most

3

hierarchical organization of both charts and states.
Charts can exist within charts. A chart that exists in
another chart is known as a subchart. Similarly,
states can exist within other states. Stateflow
represents state hierarchy with superstates and
substates. A transition out of a higher level, or
superstate, also implies transitions out of any active
substates of the superstate. Transitions can cross
superstate boundaries to specify a substate
destination. If a substate is active its parent
superstate is also active.

specifying that a transition occurs, given that the
specified expression is true.

Actions take place as part of Stateflow
diagram execution. The.action can be executed
either as part of a transition from one state to
another or based on the activity status of a state.
Transitions ending in a state can have condition
actions and transition actions.

states that can be active at the same time. The
activity of each parallel state is essentially
independent of other states. You represent
parallelism in Stateflow by specifying parallel
(AND) state decomposition. Parallel (AND) states
are displayed as dashed rectangles.

Default transitions specify which exclusive
(OR) state is to be active when there is ambiguity
between two or more exclusive (OR) states at the
same level in the hierarchy.

Connective junctions are decision points in
the system. A connective junction is a graphical
object that simplifies Stateflow diagram
representations and facilitates generation of
efficient code. Connective junctions provide
alternative ways to represent desired system
behavior.

A condition is a Boolean expression

A system with parallelism has two or more

Translation Method & Design
The authors of Stateflow adopted the graphical

notation of Statecharts as proposed by D. Harel in
[3] but designed a different semantics to this
notation. The Statemate tool supports the original
semantics developed by D. Harel and there are
some advances that extend Statemate specified
designs to model checking facilities [MLSH99].

The following list illustrates the differences in
semantic design between Stateflow and Statemate
Statecharts, which makes clear that we can not use
Statemate-based tools for Stateflow Statechart
verification.

In Stateflow semantics there is at most one
event active at a time. In Statemate semantics
any finite number of events are allowed.

Emitting an event in Stateflow semantics means
to pass control to the receiver chart of the event
just in the moment of emitting the event. In
Statemate semantics events are collected until
the end of the step and then broadcast to the
entire chart.

In Stateflow semantics the execution order of
transition segments (they constitute transitions)
is determined by their graphical placement:
outgoing transition segments of one state are
considered for execution in clockwise order.
Hence, in Stateflow semantics it is not possible
to select one enabled transition non-
deterministically, as it is allowed in Statemate.

In Stateflow the execution order within an
AND-state is determined by the graphical
placement of the AND-composed charts. In
Statemate all AND-states are executed
simultaneously.

In Stateflow semantics the effect of changing
variables takes place immediately. In Statemate
semantics a variable change takes effect only at
the end of the step.

We propose a new format, hierarchical
sequential automata (HSA), that accurately reflects
Stateflow semantics.

The translation idea is to associate to each
Statechart a hierarchical sequential automaton that
is semantically equivalent to the source Statechart.
A hierarchical sequential automaton consists of a
finite set of cooperating sequential automata that
can be implemented as parallel processes in
Promela (consider Figure 1). For the two-step
translation the diagram in Figure 1 has to commute.
Therefore we require an equivalence notion
between the semantics of the source Statechart,
intermediate HSA and the resulting Promela code
(e.g. bisimulation).

4

Statechart HSA + Promela

i i i
Semantics = Semantics = Semantics

Figure 1. Two step translation of Statecharts

Here the translation of Statecharts to HSA and
the semantics of HSA have to be defined using the
same rigorous methods as was done by E. Mikk in
[MLSH99, MikkOO]. This will be considered in
further work.

The general idea of the translator-generated
code is the following. There will be one Promela
process for each OR-state (which corresponds to
one automaton in HSA) such that the process
implements its OR-state. Statechart states, events
and variables are encoded as Promela variables and
Promela processes change the values of these
variables in order to simulate state changes, event
generation and variable changes according to the
semantics of Stateflow. The observable behavior is
defined with respect to the variables representing
Statecharts states, events and variables. These ideas
are very close to the ones in the paper on translating
Statemate Statecharts to Promela [MLSH99].

In this paper we discuss three additional topics
beyond semantics and translation definition that are
inevitable for practical verification setup:

How to achieve a closed model for the code
generated from the FP response specification in
Statecharts? Here we manually extend the
automatically generated code by user-written
Promela code, which will model the
environment. Both the model of the
environment and its integration with the
generated code must yield a closed system
which is a valid model of the real system.

What kinds of verification conditions are
needed for the analysis of control systems
designed in Stateflow statecharts? Here we
introduce the notion of a responsive controller
that eventually reacts to each environment
input.

We argue that some features of the Stateflow
semantics might give rise to design faults that

are hard to detect because the semantics
determine one specific execution order. We
compensate for this by changing the translation
of HSA to Promela such that every execution
order is considered when a property of interest
is verified. Formally speaking, this change is a
generalization of the original semantics that
means that we consider the original execution
order but alternative execution orders as well.

Integration of user written Promela code with
translated code

In this section we consider the flow of control
between user-written Promela code and the
translated code. The motivation is to allow user-
written Promela code to model the environment of
the translated code such that these two parts
together constitute a closed system. We consider
the following issues:

The interface of translated code that allows the
user-written code to pass control and data to the
translated code.

How to ensure mutually exclusive flow of
control between user-written code and the
translated code: whenever translated code is
executed the user-written code waits for this
execution to be completed and vice versa. Here
we adopt the ideas of the synchrony hypothesis:
the controller program (here represented by the
translated FP response specification) reacts
infinitely faster than the environment ("zero-
time") and therefore the environment can be
considered as "waiting" for the controller to
complete. This construction is valid only if the
controller program is responsive; i.e. eventually
reacts to each environment input. We will
discuss how we verify responsiveness.

The definition of the so-called execution step of
the translated code, i.e. the set of translations
and actions taken and executed while active
before the flow of control is passed back to the
user-written code.

The interface of translated code
The translator generates for the given

Statechart model the following Promela definitions.
For every event of this model the translation
creates a boolean variable in Promela code such

.

5

that when the variable is true the event is
considered to be available in the current step.
Since at most one event can be available at a
time we can, altematively, associate the
presence of events to non-zero values of an
integer variable (assuming the value 0 to
represent "no events available"). This
alternative approach is a memory optimization
for verification runs. In the following treatment
we assume that we have a boolean variable for
each event.

For every boolean or integer variable, that is
read or written by conditions and actions of our
model, the translation creates the respective
variable in the Promela code. User-written
Promela code can access these variables for
reading and writing.

For every OR-state there is one Promela
process: execute-state that implements the
states and transitions of this OR-state.

For passing control between the above-
mentioned Promela processes there is a notion of
top-down activation and bottom-up notification as
explained in the following. There are activation
and notification conditions for each Promela
process of the generated model. Initially all
Promela processes are waiting for their respective
activation conditions to be satisfied. When this
condition gets satisfied (e.g. set by the
environment) the Promela process executes its
respective code. For example, in the case of
execute-state an enabled outgoing transition is
taken. After that the process sets the notification
condition of its activator and returns to the state of
waiting for activation.

The following example shows the use of
activation and notification for the implementation
of the example in Figure 2.

#define WAITACT(st) st?l
#define ACTIVATE(st) st!l;
#define RESET-NOTICE(n) n=O;
#define INC-NOTICE(n) n++;
#define WAITNOTICE(n, i) (n==i)

active proctype example-chart()
{
loop: atomic{
WAIT-ACT(act-example-chart) - >

:: cur-st-example-chart= =state-init ->
if

if
:: (event-ACT) -> {

cur-st-example-chart =state-active;
/* activate sub-state */
cur-st-active-chart=statefirst-attempt;

I
:: else -> {

skip;
/* no during actions */

I
fi;

if
:: cur-st-example-chart= =state-active ->

:: (event-ERR) -> {

cur-st-active-chart =notactive-example-state;
cur-st-example-chart=state-end;

I
:: else -> {

/*pass control to sub-state */
RESET-NO TICE(not1jication-exampl e-chart),

ACTIVA TE(act-example-state);

WAIT-NOTICE(notification-example-chart, I) - >
I
fi;
:: cur-st-example-chart= =state-end - > {

skip;
/* no outgoing transitions */
/* no sub-states */

I
fi;
got0 loop;

I

Figure 2. Activation & Notification

6

Coding conventions for integration of user-
written Promela code with translated code

The coding conventions for integration of
translated code with user-written Promela code are
the following:

1. The user-written Promela code may set values
of event, boolean and integer variables.

2. The user-written Promela code may pass
control to the translated code execute-root by
setting the activation condition of this function.
Similarly, after activation the user-written
Promela code waits for the corresponding
notification condition to be satisfied. This is
done using the pattern of the previous example.

Implemented in this way the flow of control
between the user-written Promela code and the
translated code guarantees mutual exclusiveness in
their execution. While user-written code is
executed the translated code waits for an activation
condition to be satisfied and while the translated
code is executed the user-written code waits for the
notification to be satisfied.

Next we consider in more detail under which
condition the control is passed back from the
translated code to the user-written code.

Maximum step approach
We can distinguish between two kinds of

behavior in the Stateflow model

1. Execution of actions as a result of taking
transitions, or executing state actions associated
with exiting and entering of states or to the
situation where the control remains in the state
it was in before execution (during actions).

2. No execution of actions because there are no
enabled transitions and the set of actions
associated with the entering and exiting of
states or during action set is empty.

Here we follow the so-called maximum step
approach: the control is passed back to the user-
written code only if there is no execution of actions
in the current step as described in point 2.

We detect this state as follows: we define a
new boolean variable action-executed and initialize
it to false. The intention is that whenever an action
is executed, this variable is set to true. When the
function execute-root is activated, it initializes this

variable to false. When the function execute-root
completes the execution as described above, it tests
the value of action-executed: when the value is
true, the function resets the variable
action-executed and continues its execution by
activating the function corresponding to its direct
active child. When the value isfalse, the
notification condition of the caller of execute-root
is established and the function execute-root moves
to the waiting state for activation.

Responsive control program

interaction with the environment, e.g., in the case of
Statecharts by receiving events from the
environment and by responding to them. Since the
FF responses designed in Stateflow are playing the
role of the controller in a reactive system we are
interested in verifying that the Stateflow model
indeed interacts with its environment infinitely. We
are interested in the verification condition that
expresses the responsiveness property of the control
program. A non-responsive controller might have
design faults of the following kind:

Reactive systems are characterized by infinite

The controller program loops without
responding to the environment and without
accepting new inputs from the environment.

The controller program executes no actions in
response to the environment input and does not
change its state.

As we learned in Section "Integration of user
written Promela code with translated code" the
concepts of activation of the controller and
notification of the activator exist. We call a control
program responsive if every execution passes the
state where the notification condition is satisfied
infinitely often. This property can be expressed as a
formal Linear Temporal Logic (LTL) property and
can be verified using Spin.

Verification of all execution orders

execution order of transitions; this influences the
execution order of actions associated with states,
state activation and deactivation. One major benefit
of graphical representations like Statecharts is that
even complex systems can be described in a clear

The semantics of Statecharts determine the

7

way that is intuitive to both the reader and the
designer of the specification. In the following we
present some counterintuitive examples that
demonstrate caveats to the designer and reader of
the specification. We think these particular
semantic features might give rise to human error.
To compensate for this, we propose a more general
verification that is not sensitive to these features of
the semantics.

Outgoing transition segments of one state
Please consider the example in Figure 3.

Assume that in both charts state A is active and we
consider its outgoing transitions. Due to clockwise
execution order, the left Statechart moves from state
A to state B but the right chart moves from state A
to state C. The other transitions next in the clock-
wise execution order are not considered at all.

1

Figure 3. Different results of clockwise execution
order

This example shows that a small change in
graphical representation of the design idea might
decide between a design fault and sound design.
For rigorous verification we propose to change the
semantics of Statecharts: instead of clockwise
execution order we use non-deterministic execution
order of outgoing transitions of one state. For the
charts in Figure 2 this means that their behavior is
equivalent: from state A one non-deterministically
moves to state B or state C.

Execution order of AND-composed states
Design faults related to execution order might

rise from the graphically determined execution
order of AND-states are well. Consider the charts
in Figure 4. The left chart executes its AND-states
in the order ABDC but the right chart executes
order ABCD; here the mutual position of state C
and D make the difference. Note that if state B
were one pixel higher than state A in the graphical

representation then the execution order of A & B
would be swapped in both charts.

Figure 4. Example of AND-composition

Here, too, we propose to change the semantics
for rigorous verification such that every possible
execution order of AND-states is examined.

Backtracking order
Finally we consider backtracking sensitive

execution order. Please consider the chart in Figure
5. Assume that condition C22 is false and all other
conditions are true; assume that state A is active
initially. Clock-wise execution order determines
that transition labeled with C2 is evaluated and
taken. Then C22 is evaluated to false which means
that the execution has to backtrack [11. If the
backtracking strategy considers C21 first, state D
becomes active. This strategy is implemented in
Stateflow. However, if the backtracking strategy
considers C1 , then the execution moves finally to
state C.

1

Figure 5. Example with backtracking behavior

Here, too, we propose to change the semantics
for rigorous verification such that every possible
backtracking order is examined.

8

Components of the translation tool set

tool set that achieve the translation presented in the
previous Sections. There are three core programs in
the translation tool set: SfParse, sf2hsa and hsa2pr.
SfParse takes a Stateflow model file (.mdl) as input
and parses from the statechart the relevant (non-
graphical) data for our translation.

We now describe the various programs of the

The sf2hsa program performs the translation of

machine models between Stateflow and the Spin
model checker.

The hsa2pr program translates one hierarchical
sequential automaton to Promela, the input
language of the Spin model checker. A support
program, HSAMerge, allows multiple HSA files to
be merged so that their translation produces an
integrated Promela model of the input automata.

the parsed data set into the HSA format. As Prototyping for Mission Critical FSW
previously mentioned, HSA is an intermediate
format that offers a small set of syntactical elements
for defining the syntax and semantics of the
powerful language of statecharts. It was developed
primarily to promote the exchange of finite state

Figure 6 illustrates the Translation Tool Set
and its interfaces with the closed-loop system
components that maximize the Spin model checking
results of our DS 1 FP system design.

Figure 6. System Diagram for Fault Protection Model Checking Prototype

DS 1 FF design. Many of these charts are simple (5
or less basic states and transitions), yet some are
quite complex (e.g., Standby - mentioned earlier,
and the DS 1 Launch sequence).

As an example demonstration of our
prototyping technique we first translate two FP
response statecharts: detumble & power-config,
which is a subchart of detumble. The detumble

The FP Responses.. .the Test Article
We seek to demonstrate our approach on the

set of DS 1 Fault Protection Responses (described
earlier) by translating each response .mdl file from
Stateflow to HSA and then to Promela with our tool
set. There are 25 unique response statecharts in the

9

response performs the critical activity of stabilizing
the spacecraft after separation from the launch
vehicle or after any entry into a Standby mode
where the flight computer is rebooted and inertial
reference is lost. The power-config response
performs power-cycling (off/on) for devices
selected by the calling response. In the case of
detumble, power-config power cycles the Inertial
Measurement Unit (MU) and the Propulsion Drive
Electronics (PDE) to clear any faults in the
hardware. Next we describe the environment model
that we create to close the loop around the FP
responses.

The Closed Loop Environment
To properly verify the FP Responses we

provide an interactive closed-loop environment that
emulates the response execution actions on the
spacecraft. We introduce two abstract models; one
of the FP Engine, the central component of the FP
architecture and interface between the FP
Responses and the spacecraft system, and one of the
spacecraft itself. We abstract only those features of
the FP Engine and spacecraft that are necessary for
proper FP Response execution.

The Abstract FP Engine is hand-coded in
Promela. It is primarily responsible for the non-
deterministic scheduling execution of the FP
responses. The following FP Engine features are
also supported in our abstraction: . Waypoints for permitted response

. Tiered response execution . Internal variable management

We abstract away the features that are not
required to support Fp response validation in our
system such as symptom to fault mapping and fault
to response mapping.

The abstract FP Engine provides for the
distinction of 3 priority levels among executing
responses. They are:

interruption

Interruptible responses (low priority) . Non-interruptible responses (medium) . Ground-issued commands (high)

The following sample Promela segment selects
the response to be executed based on these
priorities.

active proctype fp-engine()
{ pid r;

do
:: d-step {

running c 0 ->
if
:: nempty(high) -> high?r
:: else ->

if
:: nempty(medium) -> medium?r
:: else ->

if
:: nempty(1ow) -> low?r
:: else -> r = -1

fi fi fi;
running = r

1
od

1

We chose to capture the Abstract Spacecraft
Model specification such that partial translation via
HSA is permitted. The spacecraft model
information consisting of variables, transitions,
states, their hierarchy, and default status is captured
in a simple tabular notation and formatted into HSA
using a custom Per1 script. Hence we are now able
to auto-translate the spacecraft model from the
intermediate HSA format to Promela using the
hsa2pr program. This is a powerful extension to the
original translation path directly from Stateflow-
specified designs.

power-config we specify the environment model
based on the commands that are issued to the
spacecraft as a result of response execution. These
commands become the transition events between
components of the spacecraft model. For example,
when the power-config response issues the
command IMUPOWER-OFF it declares the
following transition event in the spacecraft model:

For our first example including detumble and

IMU POWER OFF IMU-On

10

We specify hierarchy by indicating any
parendchild relationships between components of
the spacecraft, and we identify the default states of
all components. We prove our technique for the
detumble example to pave the way for specifying
the full abstract spacecraft model that can close the
loop around the entire set of DS 1 FP responses.

Next Steps - Integration & Validation
with Spin

The Promela model fragments that are
generated from Stateflow and by the user can be
integrated into a single verification model with the
help of the FeaVer system [8]. For the generated
models, we rely on the availability of a newly
extended version of the Spin model checker (Spin
version 4) that allows for the use of embedded C
code fragments inside Promela code. Via this
mechanism, the model checking code can be linked
with original C code libraries that implement
elements of the flight software that can be executed
as atomic functions during the model checking
exercise.

We are in the process of building a library of
correctness properties for this code, from which we
plan to derive formal Spin never claims that can
then be verified mechanically by the model checker.
The final system should allow us to check the
Stateflow specifications within their intended
context with a thoroughness that is virtually
impossible to achieve by other means.

Once the design is validated we will also
investigate how to correlate the validated design to
the real implementation. The open issues to be
investigated here are:

preserve the semantics of Statecharts?

conservative abstraction of the real system, i.e., are
all errors of the design reproducible in the
implementation?

implementation and of the system design in future
work.

1. Does the code generation of Stateflow

2. Is our verification model (closed system) a

We will report on the validation of the

Technology Infusion Plans
A JPL proposal has been submitted to apply

our translation tools & methods for Spin model
checking of the following state-based systems:

Deep Impact (DI) FP Responses; design
implemented in Stateflow; DI launches in
January 2004
Attitude Control Subsystem (ACS) Mode
Commander; subsystem component used in
many JPL spacecraft designs

Mars Exploration Rover (MER) Surface
Operations Behaviors (comprised of Activity
Constraint Monitor & Resource Arbiter
components); new & complex system to
achieve mission goals; MER launches in June
2003, and arrives at Mars in January 2004.

Mission Data System (MDS) Threading Policy;
portion of execution architecture that
coordinates software activities among threads
with allocated resources (time, CPU utilization,
message bandwidth, etc.); a revolutionary
software architecture under development for
future JPL flight missions including Mars
Smart Lander, planned for launch in 2009.

References
[Har87] D. Harel, Statecharts: A Visual

Formalism for Complex Systems.
Science of Computer Programming,

G.J. Holzmann, The model checker
Spin, IEEE Trans. on Software Eng.,

G.J. Holzmann and M.H. Smith,
Automating software feature
verification, Bell Labs Technical
Journal, 5(2):72-87,2000.

E. Mikk, Semantics and Verification of
Statecharts. PhD Thesis. Technical
Report of Christian-Albrechts-
University in Kiel, October 2000

G. Holzmann, Implementing
Statecharts in PROMELMSPIN. In
Proceedings of the 2"d IEEE Workshop

ASSP-34(2): 362, 1986.

[Ho197]

5 (23): 279-295, 1 997.

[HSOO]

[MikkOO]

[MLSH99] E. Mikk, Y. Lakhnech, M. Siege1 and

11

on Industrial-Strength Formal
Specification Techniques. pages 90-
101. E E E Computer Society 1999.

N.Rouquette, T. Neilson, and G. Chen,
The 13" Technology of DS 1 . In
Proceedings of IEEE Aerospace
Conference, 1999.

The Mathworks Stateflow Users Guide,
http:Nwww.niathworks.com

[RNC99]

[SFUG]

Biographies
Dennis Dams is a member of technical staff in

the Computing Principles Research Department at
Bell Labs in Murray Hill, New Jersey. He works on
methodologies and tools for computer-aided
software verification. He received his Ph.D. degree
in 1996 from Eindhoven University of Technology
in The Netherlands (title thesis: "Abstract
Interpretation and Partition Refinement for Model
Checking").

Gerard J. Holzmann is Director of the
Computing Principles Research Department at Bell
Laboratories, in Murray Hill, NJ. He joined Bell
Labs in 1980, after receiving his PhD from Delft
University in The Netherlands. In 1995 he was
appointed Distinguished Member of Technical
Staff. Dr. Holzmann has done research in software
verification techniques, requirements engineering,
and computer graphics. He is best known as the
author of the Spin model checker, one of the most
widely used verification systems for distributed
systems. Dr. Holzmann has published over 70
technical papers, authored 3 books, and holds 6 US
patents.

Erich Mikk is a Principal Engineer in the
Software and Engineering Department of the
Siemens Corporate Technology Division in
ErlangedGermany . Currently he is involved in the
design and implementation of engineering tools for
systems design. Dr. Mikk obtained his Ph.D. degree
in 2000 at the Christian-Albrechts University in
Kiel. His thesis titled "Semantics and Verification
of Statecharts" considers mathematical foundations
and tool construction for model checking statechart
specifications. Before obtaining his degree Dr.
Mikk worked at the Christian-Albrechts University
in Kiel in a research project that cooperated with

Daimler Benz on formal methods and test
automation.

Paula J. Pingree is a Senior Staff Engineer in
the Autonomy & Control Section at JPL. She has
been involved in the design, integration, test and
operation of several flight projects including Mars
Observer, Cassini, Mars Global Surveyor, and Deep
Space 1. She currently works on software systems
engineering and technology infusion. Ms. Pingree
holds a Bachelor of Engineering degree from
Stevens Institute of Technology in Hoboken, NJ,
and an MSEE degree from California State
University, Northridge where she also teaches part-
time in the Electrical & Computer Engineering
Department.

of technical staff in the Scientific Computing
Research Department at Bell Labs in Murray Hill,
New Jersey, where she works on application of
computer-aided verification tools and technology
transfer. She received B.S. and M.S. degrees in
industrial engineering from University of Michigan
in Ann Arbor.

Margaret H. Smith is a distinguished member

12

http:Nwww.niathworks.com

