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ABSTRACT 

For many years the diverse scientific community that supports JPL's wide variety of 
interplanetary space missions has needed a tool in order to plan and develop their experiments. 
The tool needs to be easily adapted to various mission types and portable to the user community. 
The Science Opportunity Analyzer, SOA, now in its third year of development, is intended to 
meet this need. SOA is a java based application that is designed to enable scientists to identify 
and analyze opportunities for science observations from spacecraft. It differs from other planning 
tools in that it does not require an indepth knowledge of the spacecraft command system or 
operation modes to begin high level planning. Users can, however, develop increasingly detailed 
levels of design. 

SOA consists of five major functions: Opportunity Search, Visualization, Observation Design, 
Constraint Checking, and Communications. Opportunity Search is a GUIdriven interface to 
existing search engines which can be used to identify times when a spacecraft is in a specific 
geometrical relationship with other bodies in the solar system. This function can be used for 
advanced mission planning as well as for making last minute adjustments to mission sequences in 
response to trajectory modifications. Visualization is a key aspect of SOA. The user can view 
observation opportunities in either a 3D representation or as a 2D map projection. The user is 
given extensive flexibility to customize what is displayed in the view. Observation Design allows 
the user to orient the spacecraft and visualize the projection of the instrument field of view for 
that orientation using the same views as Opportunity Search. Constraint Checking is provided to 
validate various geometrical and physical aspects of an observation design. The user has the 
ability to easily create custom rules or to use official project-generated flight rules. This 
capability may also allow scientists to easily impact the cost to science if flight rule changes 
occur. Finally, SOA is unique in that it is designed to be able to communicate with a variety of 
existing planning and sequencing tools. 

From the very beginning SOA was designed with the user in mind. Extensive surveys of the 
potential user community were conducted in order to develop the software requirements. 
Throughout the development period, close ties have been maintained with the science community 
to insure that the tool maintains its user focus. Although development is still in its early stages, 
SOA is already developing a user community on the Cassini project which is depending on this 
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tool for their science planning. There are other tools at JPL that do various pieces of what SOA 
can do; however, there is no other tool which combines all these functions and presents them to 
the user in such a convenient, cohesive, and easy to use fashion. 

1.0 Introduction 

Spacecraft tend to be “closed systems” similar in many ways to cars. Both have steering 
mechanisms; both need fuel and both have instrumentation. However, the instrumentation is 
different. In cars instruments are generally indicators that give the driver information. On 
spacecraft they can be scientific instruments that perform observations and collect data. Another 
difference is that many spacecraft rely on commands sent from the ground to tum hardware on 
and off, perform diagnostic checks and start instrument observations because they don’t carry 
human drivers to carry out these functions. They only have computers to relay the information to 
the spacecraft hardware. 

Unlike cars, spacecraft operations are tied to an eventdriven timeline that is governed by orbital 
mechanics. It is not possible to stop the spacecraft to make decisions about the best observation to 
be made next. These characteristics along with the finite nature of spacecraft resources (there are 
no gas stations in space) place a premium on planning spacecraft activities. Science Opportunity 
Analyzer (SOA) is a software tool with broad functionality designed to meet this need for 
planning. 

In order for the scientist to be able to get the highest quality data and the best observations, the 
scientist needs to have information that shows that the planned observation not only meets with 
the scientific objectives, but also meets with reality. However, in the past, the science user has 
been left to develop ad hoc tools that are specific to a particular space mission for a specific 
instrument built solely for that mission. These tools have not allowed the users to share 
observation information easily and tend to be a bare minimum of what is actually needed. 
Generally, these tools don’t communicate with other software tools that are used to setup the 
commands that are to be sent to the spacecraft. Science Opportunity Analyzer (SOA), a software 
tool, has been built to fulfill the need of assuring that the science objectives can be meet as well 
as the needs of sharing information and entering the observation into the pipeline that ultimately 
results in commands to the spacecraft. 

For this tool to meet the needs of the user community, it has been important to find out what the 
end user needed. A methodology called “Quality Functional Deployment” (see, e.g., Belhe and 
Kusiak, 1996) or “Obtaining the Voice of the Customer’’ was used. A cross discipline group of 
scientists, software engineers and system engineers met and created an open-ended questionnaire 
and interviewed 40 selected stakeholders in the software. This group also developed a closed- 
ended set of questions (short answer, fill-in-the-blank, multiple choice, rank, etc.) as a check of 
the results of the interviews using the open-ended questionnaire. The results of the interviews 
were then transformed into required functional capabilities and ways to measure those functional 
capabilities. It was important for this group to continue in some way to insure that the software 
remained true to its charter. The software and system engineers formed the SOA Development 
Team, and developed the software requirements and the top-level design. The science members 
became members of the SOA Standing Review Board. The software requirements and the design 
reviews have been held before this evaluation board. In this way the software has continued to be 
implemented based on the “Voice of the Customer”. 

From the interviews several basic scenarios of how a science user would use a tool like SOA 
were developed. The following is one typical high-level scenario. 

2 



1. One or more time periods of opportunity that satisfy entered geometric criteria are found. 
2. The science user selects one of the time periods and chooses to see a display of that time 

in either a 2dimensional or a 3dimensional view. 
3. The user determines the time window with the most potential and proceeds to design the 

observation. During this time the user continues to check the display of the design to 
make sure that the design, as it unfolds, continues to meet the science objectives. 

4. As part of the design process the science user chooses to have the tool check the design 
against spacecraft constraints. These constraints may be geometric in nature. For 
example, the instrument may not be able to have the Sun in its field of view without 
damaging the instrument. The constraints may be hardware state driven. In this case, an 
example would be that the spacecraft couldn’t actually turn as quickly as desired. 

5 .  After the design is constraint-free, the science user refines the design and saves it for 
future recall. 

6. Finally, the user adds the design to the plan of activities that are to be sent to the 
spacecraft. Constraint checking will be performed again once all of the observations and 
other spacecraft tasks are entered in the plan of activities. 

At any place in the scenario, the science user can go back to a previous step and make changes as 
needed or desired. SOA has been built to perform all of these tasks. It consists of five major 
functional areas: Opportunity Search, Visualization, Observation Design, Constraint Checking 
and Communications. 

Before proceeding with a more detailed description of the major functional areas, it is important 
to understand the process of sending commands to a spacecraft. At The Jet Propulsion Laboratory 
(JPL), this process is called the Uplink Process. It consists of engineering and science groups 
deciding on the tasks and observations that they want the spacecraft to perform. These tasks are 
defined and all of them are placed on a time-line that forms an operational plan for the spacecraft. 
The time-line is refined so that it contains no constraint violations. In order to eliminate the 
conflicts the tasks in violation are sent to their respective submitters for modification and then 
resubmitted. It is important that the tasWobservation is initially constraint free or it is possible that 
the tasWobservation will be removed from the plan. All of the functional areas in SOA support an 
observation being added to the operational plan. 

2.0 Science Opportunity Analyzer (SOA) 

Currently, SOA is a java-based application that runs on Suns under Sun Solaris and PCs under 
NT, XP, 2000 and Linux. It is a multi-mission tool and can be easily configured for different 
missions. It utilizes Swing, Java 3-D, Java 2-D and XML extensively. SOA uses a hierarchical 
approach to objects so that project specific objects can be easily added. The project specific 
objects form the lowest tier of the hierarchy. SOA has tabs (see Figure 2.1) that represent the 
major work areas of Opportunity Search, Observation Design (Visualization and Spacecraft Task 
Selection), Constraint Checking and Communications. For the next delivery another tab has been 
added for Output Data. SOA uses spacecraft trajectory information, planetary constants and 
spacecraft information provided by JPL Navigation. 
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Figure 2.1 shows the Opportunity Search display. A search for a flyby of Enceladus has 
been performed and the time periods that met the search criterion are shown. 

2.1 Opportunity Search 

In the user scenario above the first area the science user accesses is Opportunity Search. 
Opportunity Search allows the science user to identify times when a spacecraft is in a specific 
geometric relationship with other bodies in the solar system. This functional area allows the user 
to select from a list of more than thirty geometric search criteria including periapse times and 
apoapse times and various illumination geometries. These search criteria are based on continuous 
functions that occur either at a specific time (for example, a certain distance from a celestial 
body) or over a time span (for example, an occultation). A search criterion can be created or 
entered from a file of previously created criteria. If the search criterion is new, the science user is 
presented with a drag and drop graphical user interface. The interface also displays a list of the 
information that is needed by that search criterion - called properties. The science user enters the 
desired properties associated with the selected search criterion including the celestial bodies 
involved and other pertinent information such as angles or distance. A search criterion can be a 
simple single search or a more complex search combining multiple search criteria using Boolean 
operators of “and”, “or”, and “not”. Once the search criterion is created and written to the list, the 
science user selects to have the software perform the search. The time periods when the 
geometric criteria have been satisfied are presented to the user in a list (see Figure 2.1). 

SOA uses two search engines that have been created at Jet Propulsion Laboratory. Each of these 
search engines requires the input data to be entered a specific way. SOA has divided the 
Opportunity Search objects into two groups - the software models that contain the values for the 
Opportunity Search criterion properties and the templates that put the properties in the correct 
format for the chosen search engine. This scheme allows new search engines to be added easily, 
and for search criterion to be easily changed. Finally, this scheme permits the objects to be 
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discovered at runtime. “Discovery at runtime” means that SOA loads into the software only the 
objects that are available to be used. If a search criterion is not needed, then it is simply removed. 

2.2 Visualization 

Now that the science user has found the time(s) that match the geometric criteria, the next step is 
to look at a picture of the information. SOA allows the science user to select from several view 
options: 3 dimensional perspective projection, 3 dimensional arbitrary observer, 2 dimensional 
sky map and 2 dimensional trajectory plot. The perspective projection renders the view from the 
point of view of a specified observer looking at a target. Generally, the observer is a spacecraft 
and the target is a celestial body. The arbitrary observer view is a parallel projection that is 
rendered from an observer who can be arbitrarily placed in space by the user. The 2 dimensional 
sky map is an equidistant cylindrical map projection of the celestial sphere as viewed from the 
spacecraft. The 2 dimensional trajectory plot is a view of the spacecraft’s trajectory around the 
target body. If the target body has satellites, this display also shows their orbits. This plot can be 
viewed from the ecliptic or the equatorial planes. The user can select items to be included in the 
picture such as: Right AscensiodDeclination (RA/Dec) grid, latituddlongitude grid, stars, 
magnetic field, planets, satellites, lighddark terminator, and other geometric information. If an 
item is not appropriate for a view, that selection is not made available to the user. For example, in 
the perspective view, the spacecraft trajectory can’t be seen since the observer is the generally the 
spacecraft itself. The selection to make it visible is not presented to the user. The user can also 
chose to see more than one view in a single window or multiple windows can be rendered with 
different views. 

In Visualization the same hierarchical approach as Opportunity Search has been taken. The real 
world coordinates and formulas plus the characteristics of the real world entity form the software 
model objects. The actual Java 3-D constructs form the primitive objects. For example, an 
RA/Dec grid is comprised of a model object that has its properties of a line model, a text model, 
the grid spacing for both Right Ascension and Declination, the label spacing for both, etc. The 
associated primitive sets the Java 3-D components of appearance and the attributes for both the 
lines and the labels. This approach again allows a specific project to easily add, modify, 
customize or delete objects that are specific to that particular project. All of the objects are 
discovered at runtime. 
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Figure 2.2 is a perspective projection of the closes approach of the Cassini spacecraft to 
Enceladus. The red square is a field of the view of the camera projected onto the sky. It is red 
because it violates a constraint. 
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Figure 2.3 is an arbitrary observer view of the pole of Saturn. In this view the spacecraft 
trajectory is also shown. The lines originating at the spacecraft are various physical phenomena. 
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2.3 Observation Design 

Once the user sees a picture that conforms to the desired objectives, an observation design can be 
started. The science user can frrst choose to just look at the time and by specifying the spacecraft 
attitude, the user can look at a display that shows the scene, but also contains an instrument field 
of view. A field of view is an instrument aperture; generally they are squares, rectangles or 
circles. These fields of view can be projected onto the target - similarly to the way a person uses 
a camera with a viewfinder. This projection gives the scientist an idea of the coverage of the 
observation. Once the science user is satisfied with the coverage and the view, an observation 
type is selected. 

The current choices are start-stop mosaic, continuous scan, roll about an axis, and stare. A start- 
stop mosaic consists of a series of pictures that are taken. The spacecraft or instrument platform 
or the instrument itself is moved to a location and waits while a picture is taken. This step is 
repeated until all the desired pictures are taken for the observation. A continuous scan is a series 
of measurements made at different pointing geometries while the spacecraft or instrument 
platform or the instrument itself are continuously moving. Roll about an axis is an observation 
that is performed while the spacecraft is rotating around a single axis. The stare observation is 
simply one that is performed while the spacecraft maintains a fixed attitude with respect to the 
target. Each observation type has properties that must be selected. There are general properties 
such as the target and observer that apply to all of the observation types. 

There are also properties that are specific to a particular type of observation such as the roll axis 
for a roll about an axis observation. Once the properties are selected, the user can choose to view 
the observation again with the new information that has been provided. At this point the scientist 
may want to animate the depiction to see how the scene changes over time. The user may review 
and change the properties and re-plot the depiction as many times as desired. 

iown is a scoping level 
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For Observation Design the software objects come in two flavors. The main object contains the 
information common to these observations like the start time and the target. The secondary object 
specifies the information that is specific for that type of observation, like the number of pictures 
to be taken. In addition to these objects, this area has objects that map the SOA observation 
properties to other tools such as the software that contains the plan of spacecraft activities. Most 
spacecraft missions have their own way of specifying observations and other spacecraft tasks (or 
activities). This area has a strong hierarchical component so that missions will have an easier time 
adding mission specific observations. 

2.4 Constraint Checking 

At this point if the science user has not already performed constraint checking on the observation, 
it is time to make sure that there are no constraint violations. The constraint violations are of two 
varieties. The first variety is the group of constraints that are geometric in nature. This group 
consists of various exclusion zones or impediments to performing the observation. An exclusion 
zone might be an angle that specifies a region where the Sun is too bright for an instrument or an 
area where another bright body is visible and may hurt a sensitive instrument. Sometimes it is not 
damaging if the distance from the bright body places the instrument in a safe zone or if the 
exposure to the bright light is below a given threshold. The exclusion zone object has four 
variations. It can simply be an angle that must be excluded. It can be an angle with a distance 
attached. It can also be either of these two with an exposure time attached. Impediments may not 
be dangerous, but may cause the observation not to meet its objectives. An example of this case 
might be the occulting of the target body by another body or that another body is transiting across 
the target body in such a way as to spoil the observation. Currently, this type of violation hasn’t 
been implemented. The second group consists of state violations. Examples of this type could be 
that the spacecraft maximum rates and/or accelerations are exceeded. The converse could also be 
true - the minimum rates and/or accelerations are not met. For either type of constraint, the user 
enters the required properties through the drag-anddrop user interface. If the user finds that the 
observation causes constraints to be violated, the observation can be modified and the process can 
begin again. 

I 
Figure 2.4 shows the Constraints rule builder with the angle exclusion zone selected. 
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Flight rule objects consist of building blocks objects that can be combined to create the constraint 
rules. Each exclusion zone type has its own combined object. The drag-anddrop graphical user 
interface can be used to create the mission specific rules for exclusion zones. In addition, there 
are rate objects and acceleration objects. Since it is possible to have spacecraft rates, instrument 
platform rates and articulating instrument rates, the specific space mission can tailor these 
building blocks to their own needs also using the graphical user interface. The object hierarchy 
allows missions to add different types of rules that haven’t been provided by SOA. 

2.5 Communications 

The last task that the science user performs using SOA is to place the finished observation in the 
plan of activities with all of the other observations and the engineering tasks (like calibrations and 
maneuvers). SOA is the first tool designed to communicate with other tools used for developing 
the plan of activities for the spacecraft. In the past the scientist had to create the observation and 
then the information had to be reentered into the software that would prepare it for the 
spacecraft. Now SOA communicates with that software either by using inter-process 
communications (IPC) or through the use of files. The planning software provides a visual 
timeline and resource consumption graphs. SOA communicates with this software tool using 
inter-process communication. Observations are sent directly to this software by simply pressing a 
button. Other legacy software requires input via files. SOA, also, creates these files so that they 
can be ingested into these legacy tools. 

In addition to allowing the science user the ability to send their observations designs to other 
software, SOA allows the science user to share the observation information with other scientists. 
SOA can save the observation information in the form of a C-Kernel file (a binary file that 
contains quaternions for the spacecraft’s attitude over time). The C-Kernel file is a relatively 
standard file used by many scientists and engineers in the space industry. By producing this file, 
SOA permits software applications written by others to ingest the observation information. C- 
Kernel files are maintained by the Planetary Data System Navigation and Ancillary Information 
Facility (NAIF) at JPL 

Communication objects exist at two levels. The first level of objects contains the data that forms 
the observation. These objects have the properties for the observation and how those properties 
are to be translated to the planning software tools. The second level of objects contains the 
messages that are to be sent to the planning software through IPC. A corresponding set of objects 
contains the information on how to write the information to the files (the observation file and the 
C-kernel). Again, this separation allows projects to easily add or change the data or the format to 
meet their specific needs. 

3.0 Technical Challenges 

Creating SOA with these capabilities has not been an easy task. When SOA began, Java 1.2 had 
not been released and Java 3-D had had only a few releases. There were performance issues, 
memory leaks (on the SOA side as well as the Java side), and questions of accuracy in the 
graphics presentation. In addition, translating the data so that it could be recognized by other 
software has been difficult in terms of making sure that apples were translated as apples and not 
to oranges. At this time Java and Java 3D have made significant advances and SOA has had the 
support of Java experts at Sun. Additionally, SOA has been supported by several members of the 
science community in overcoming the obstacles. The end result is a reliable, stable SOA 
containing a wide variety of fully functional capabilities. 
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4.0 Conclusion 

In conclusion, the approach that has been taken in creating SOA has been to keep the scientist in 
mind at all times. It began by collecting the science user’s needs and proceeded by keeping this 
user involved throughout the project. The tool fills a void that has existed since science 
instruments were placed on a spacecraft. Many people have envisioned a tool of this nature. SOA 
is the beginnings of all those visions. Over time it will continue to improve to meet those 
expectations. But most importantly, SOA enables the scientist to create hidher observation easily. 
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