
Continuous Planning and Execution for an Autonomous Mars Rover

Tara Estlin, Forest Fisher, Daniel Gaines, Caroline Chouinard,
Steve Schaffer, and Issa Nesnas

Jet Propulsion Laboratory
California Institute of Technology
Cfirstname.lastname } 0 j pl.nasa.gov

Abstract

This paper describes how continuous planning and execution techniques can be used to perform
intelligent decision-making for an autonomous Mars rover. The resulting system coordinates low-level
rover functionality to achieve science targets while respecting rover resource and operation constraints.
Provided capabilities include initial schedule generation, schedule execution and monitoring, and
dynamic schedule modification to recover from unexpected events or failures. To motivate our system
framework, we discuss some of the particular challenges we are trying to address to support an
autonomous rover. We also describe our experiences in testing this work on two JPL rovers, in an effort
to demonstrate capabilities that will support future rover missions to Mars and other planets.

1 Introduction

NASA’s Mars Exploration Program plans to have us visit the red planet over six times in the next two
decades. At least four of these missions will involve rovers or other robotic craft that will be used to
explore the surface of the planet and perform numerous geological and atmospheric experiments. In order
to collect a high volume of science data, rovers will require capabilities for long-range traverses and
autonomous operation. A key aspect of these capabilities is the generation and execution of rover
command sequences. These sequences specify an ordered list of commands that achieve desired science
goals while ensuring no rover operation or resource constraints are violated. Sequences must often be
changed or enhanced during execution in response to changing science goals or unexpected state
conditions. The model of rover operations used for the Mars-Pathfinder rover and planned for the Mars
’03 twin rovers is to generate sequences on the ground based on downloaded data describing the rover’s
state (Mishkin, et al., 1998). If something unexpected happens during sequence execution, such as an out-
of-range sensor reading or significant path deviation, the rover will have very limited recovery procedures
onboard and will usually be sufed until further communication from the ground can provide a new
command sequence. This procedure often causes hours of lost science time and makes it very difficult to
take advantage of unexpected science opportunities.

To address this problem, AI researchers have been developing several key pieces of software that
automatically provide the necessary command sequence for achieving science goals. Planning and
scheduling systems (Bresina, et al., 1999; Chien, et al., 2000; Jonsson, et al., 2000) take as input a set of
science goals, the current rover state, and a model of rover operations to produce a validated plan of
activities. Executive systems (Gat, 1992; Simmons and Apfelbaum, 1998) use rover state information to
further expand the plan into a detailed set of commands and dispatch these commands to rover-hardware
controllers for execution. Planning and scheduling systems typically focus on goal-driven behavior, which
enables a robotic system to produce a plan of actions based on a set of high-level goals and constraints.
Executive systems typically focus on event-driven behavior, which enables a robotic system to quickly
react to changes in its environment and modify its actions accordingly.

This paper describes an approach for using planning and execution techniques as part of a rover’s
onboard software to provide autonomous sequencing capabilities. This system is intended to run with

http://pl.nasa.gov

little communication with ground. It accepts science and engineering goals and creates a rover command
sequence (or plan) that respects relevant constraints, while achieving as many goals as possible. The
system executes the produced plan by dispatching commands to the rover’s low-level control software
and monitoring relevant state information to identify current or potential problems. If problems are
detected, the system is designed to recover from those situations by using re-planning techniques to add,
move or delete plan activities. Through this work, we have also identified a number of challenges for an
onboard planning and execution system to not only produce valid plans, but also promote robust and
efficient rover behavior. These challenges include properly interacting with the appropriate rover
navigation software, handling uncertainty in state and resource estimations, as well as effectively
balancing methods for deliberative and reactive reasoning.

In 2001, we spent a significant amount of time testing our current system on two different rovers in the
JPL Mars Yard. We will discuss our scenario design for this testing and give an overview of the results
including a discussion of how the system handled major scenario elements. Our main objectives for
testing include simulating situations that might arise in future rover missions, (such as the Mars Smart
Lander mission, planned for launch in 2009), providing feedback on our approach, and identifying future
direction on issues that still need to be addressed.

The rest of this paper is organized in the following manner. First, we discuss some key capabilities
needed to support onboard decision-making. Next, we present our current system approach and explain
how this system fits into a larger rover architecture. We then describe a Mars rover scenario that was used
to test our system on rover hardware, and describe how our system performed during that testing. Finally,
we discuss issues we are addressing in current and future work, review related work, and present our
conclusions.

2 Challenges for Onboard Decision Making

Most mobile robot efforts at JPL have concentrated on building software infrastructure for navigation,
manipulation and control. High-level decision making for these efforts, including for the Mars Pathfinder
mission, was typically done using very simple execution of linear sequences that were tediously created
by ground controllers. For upcoming 2003 Mars Exploration Rover (MER) mission, there are plans to use
a ground-based AI planning and scheduling tool to support science plan creation, however, a command
sequence will still be generated on the ground and uplinked to the rovers. In these models, when a rover
encounters a situation that deviates from its uploaded command sequence, the fault protection software
will attempt to resolve the problem. Failing that, the rover enters safe-mode and must wait for a new
command sequence to be sent from earth. This model of operations results in a significant loss in science
return since the rover must remain idle, often for hours at a time, until new commands are received.

More autonomous rovers have the potential for significantly reducing the need for entering safe-mode
and, as a result, increasing the science value of a mission. New missions are being considered that will
require rovers to support more autonomous endeavors such as long-range traversals, complex science
experiments, and longer mission duration. However, autonomy software designers face a number of
challenges in providing software to support these types of operations. In this paper, we consider a few key
challenges for using planning and execution techniques to provide onboard decision-making capabilities.

To generate its own command sequence for carrying out a set of science goals, the rover will need to
reason about a rich model of resource and temporal constraints. For example, it will need to predict power
consumption of variable duration activities such as downlinks and traverses, keep track of available
power levels, and ensure that generated plans do not exceed power limitations. When resources are over-
taxed, the rover should be capable of making sciencehesource trade-offs in an effort to produce the
highest science return. The rover will also require execution and monitoring capabilities to carry out the
generated plan on the rover platform. A execution system must be capable of commanding the control
software, collecting state updates from sensors, and dealing with activity failures or unexpected events.

Sequence generation for rover surface missions also raises a number of interesting challenges
regarding spatial reasoning capabilities. One of the dominating characteristics of rover operations is

traverses to designated waypoints and science targets. Onboard planning and execution software needs to
coordinate with several levels of rover navigation software to generate an efficient and achievable rover
plan. This coordination will likely include querying a path planner for route information needed to
generate a plan of rover activities, using position estimation values to track rover progress, and correctly
modifying the plan when navigation and obstacle avoidance software cause the rover to move off the
predicted route.

Another predominant challenge in developing onboard autonomy software is dealing with the inherent
uncertainty in predicting rover navigation and science operations. The difficulty is compounded by the
tight resource and time constraints that a rover typically faces. At the resource and temporal level, the
estimation of items such as power, memory and even activity duration can be highly uncertain. Rover
missions are directed at exploring unknown planetary terrains. Requirements for traversing these new
terrains are hard to predict. For instance, it is unknown what type of sand consistency a rover will be
traversing, which can dramatically affect the required duration and power for a traverse. Similarly, the
duration and resource requirements for science operations can vary as well. These variations could be
simple, such as a lower then expected image compression ratio, or more complex, such as a drilling
operation taking more power and time than originally estimated.

Furthermore, at the state level, the estimation of rover position is often a constant source of error. The
Sojourner rover only used dead-reckoning capabilities to estimate rover position, which produced a
position error of roughly 510% of distance traveled and an average heading drift of 13 degreedday of
traverse (Mishkin, et al., 1998). The MER rovers will use more sophisticated techniques to provide
position estimation, including an Inertial Measuring Unit and a Sun camera. However, since the MER
rovers will be traveling significantly longer distances then Sojourner, position estimation error will likely
be significant for this mission as well. Since a large part of a rover schedule consists of rover moves to
different locations, the onboard autonomy software must use estimations of position to predict the
duration and resource requirements of different operations. If these predications are inaccurate, the
autonomy software must be able to continuously modify the schedule to handle changes in expected rover
behavior.

3 A Planning and Execution System for Rover Operations

To address the issues outlined in the previous section, we have developed a system for high-level
decision-making capabilities for future Mars rovers. The system architecture is shown in Figure 1, and
currently is comprised of three major components:

A Continuous Planner that provides capabilities for initial rover plan generation and
continuously updating of that plan (i.e., re-planning) based on changing operating context and
goal information.
A Reactive Task-Level Executive that provides task-level control capabilities for a robotic
system, including execution and monitoring of a rover plan, as well as providing mediation
between a planner and low-level robot functionality.
A Global Path Planner that provides global path planning information about predicted routes to
both the Planner and Executive.

We begin our system description by first introducing the underlying robotic architecture in which this
work operates. Next we describe our framework for closely integrating planning and execution
capabilities and then give a more detailed description of the individual system modules.

0

3.1 CLARAty Robotic Architecture for Autonomy

The Coupled Layered Architecture for Robotic Autonomy (CLARAty) (Volpe, et al., 2001) is being
developed at JPL in response to the need for a robotic control architecture that can support future mission
autonomy requirements. CLARAty uses a two-layered approach to organizing robotic capabilities, which

CLARAty Functional Layer 'Current Time

Figure 1: Planning and Execution System Figure 2: CLEaR Concept Diagram

is an evolution of the traditional three-level architecture. The top layer, the Decision Layer (Estlin, et al.,
2001), contains techniques for autonomously creating and carrying out sequences of rover actions that
will achieve an input set of goals. It also provides a framework for using different types of planning and
executive systems, and for enabling new ways of combining such systems. The bottom layer, the
Functional Layer (Nesnas et al., 2001), provides a set of standard robot capabilities that interface to
system hardware. It is responsible for providing basic robot functionality using a set of generic
components that have predefined behavior. The Functional Layer also provides an interface to all system
hardware and its capabilities. In this paper we are focusing on the first instantiation of the CLARAty
Decision Layer, which is provided by the CLEaR unified planning and execution framework. Since
CLEaR is integrated as part of the CLARAty architecture, it uses the CLARAty Functional Layer to both
command the rover and access information about rover state including real-time updatedfeedback.

3.2 CLEaR Framework

The CLEaR (Closed-Loop Execution and Recovery) unified planning and execution framework (Fisher,
et al., 2002) was developed to pursue a tight integration of planning and execution capabilities. Currently,
CLEaR is a hybrid controller system that is built on top of the CASPER (Continuous Activity Scheduling,
Planning, Execution and Re-planning) continuous planner and the TDL (Task Description Language)
executive system. CASPER provides a soft-real-time capability for performing plan generation,
execution, monitoring and re-planning. Previous versions of the CLEaR framework have been
demonstrated for Deep Space Network (DSN) antenna control (Fisher, et al., 2000). Currently CLEaR is
being extended to provide planning and execution support for planetary rovers.

CLEaR' s primary objective is to provide a tightly coupled approach to coordinating goal-driven and
event-driven behavior. Many past approaches have followed a three-level architecture style where the
planning and executive processes are treated as black box systems. This is in contrast to how CLEaR
enables the planner and executive to interact with each other and more effectively share the responsibility
for decision making. In part this is managed through shared plan information and continual updates of
state being made available to both the planner and executive. CLEaR also provides heuristic support for
deciding when certain plan conflicts should be handled by the planner vs. the executive. For instance if a
rover gets off track during a traverse, the reaction of the planner and executive need to be coordinated. In
our scenario described in Section 4, if the executive believes it can resolve the navigation delay within the
original allotted time it will manage the plan changes, but once the executive identifies that the repair will
require more time or resources than allotted by the planner, it will then allow the planner to use its global
perspective to fix the problem.

In Figure 4, we graphically depict how actions near the current point of execution within the plan are
typically addressed by the executive and as time is projected further into the future the plan modifications

are expected to be primarily handled by the planner. However, the wedges highlight even in the future
certain modifications might be executive oriented.

3.2.1 CASPER Planner

Planning in CLEaR is provided by the CASPER system (Chien, et al., 2000). Based on an input set of
science goals and a rover’s current state, CASPER generates a sequence of activities that satisfies the
goals while obeying relevant resource constraints and operations rules. Plans are produced by using an
iterative repair algorithm that classifies conflicts and resolves them individually by performing one or
more plan modifications. CASPER also monitors current rover state and the execution status of plan
activities. As this information is acquired, CASPER updates future-plan projections. Based on this new
information, new conflicts and/or opportunities may arise, requiring the planner to re-plan in order to
accommodate the unexpected events.

3.2.2 TDL Executive

Most executive functionality in CLEaR is performed by the TDL executive system (Simmons and
Apfelbaum, 1998). TDL was designed to perform task-level control for robotic control and to mediate
between a planning system and low-level robot control software. It expands abstract tasks into low-level
commands, executes the commands, and monitors their execution. It also provides direct support for
exception handling and the fine-grained synchronization of subtasks. TDL is implemented as an extension
of C++ that simplifies the development of robot control programs by including explicit syntactic support
for task-level control capabilities. It uses a construct called a task tree to describe the tree structure that is
produced when tasks are broken down into low-level commands.

3.3 Global Path Planning

To provide spatial reasoning capabilities to the CLEaR system, we are also employing a global path-
planning module, which provides rover path information to the planner and executive based on a map of
the rover’s environment. This module is intended to give a global perspective of the rover’s anticipated
path as opposed to the local perspective that would be considered by obstacle avoidance software. We are
assuming that for most rover operations some global map information would be available through orbital
or descent imagery, or from panoramic imagery generated onboard the rover itself. We are also assuming
that much of the global map information would be at a low resolution and thus a significant number of
terrain features or obstacles may be missing and will need to be considered dynamically.

Currently, CASPER and TDL query for two main pieces of information from the path-planning module.
The first type of information is estimated distances between science targets and other major waypoints.
The second type is a list of intermediate-waypoint coordinates that can be used to direct the rover’s
traverse to a particular target. Path-distance information is used by the planner to estimate the duration
and power required for rover traverses between targets. Intermediate waypoints are used by the executive
to track the rover’s progress during a traverse. If the rover gets significantly off-track, the executive may
request new waypoints or it may halt the traverse and trigger the creation of a new plan.

For the tests reported in this paper, we used an implementation of the Tangent Graph path-planning
algorithm (Latombe, 1991) to provide global path-planning capabilities. Tangent Graph operates by
building a path through map free space as represented in a reduced visibility graph of 2-D polygonal
obstacles. We are also currently extending our path-planning module to use other type of path planners.

4 Rover Scenario Testing

To test and validate our approach to planning and execution for rover operations, we are developing a
number of rover scenarios that attempt to emulate mission conditions and goals. This section describes

the results of testing with one particular scenario using two different rovers. We have also tested our
system using the ROAMS rover simulation tool (Yen & Jain, 1999), however we only focus on our
hardware testing experiences for this paper.

4.1 Scenario Description

Figure 3A shows a map of the testing scenario. A number of science targets are identified on the map and
dark shapes represent obstacles known a priori (e.g., from descent or orbital imagery). This map
represents a sample site location that would be explored in detail where data would be gathered using
multiple instruments at multiple locations.

In this scenario, the types of science performed at the site includes images (taken with a mast camera),
spectrometer reads, and digs. An end of day communication activity with earth is also required (though
not reflected on the initial scenario map), and must be scheduled in a certain time window.
Communication activities typically require a significant amount of power, thus the inclusion of this
activity affects what science operations can be performed. We also made several assumptions in
developing this scenario. One, we assume mission scientists have assigned a priority to each science
target. Two, we assume that some map information is known ahead of time but other obstacles likely exist
that are not identified on the original map and thus, need to be detected through rover sensors and
obstacle avoidance software. Three, more science goals are specified than can be achieved given the
resource levels allotted for the scenario time period and the onboard planning software is responsible for
deciding what subset of those goals will be achieved.

4.2 Testing Environment and Setup

To evaluate our system, we performed a series of tests in the JPL Mars Yard using two different rovers,
Rocky 7 and Rocky 8. Rocky 7 is approximately the same size and mass as the Mars Pathfinder rover,
Sojourner. It employs a rocker-bogie six-wheel configuration, and is a partially-steered vehicle, where it
only has steering capability on two comers. In contrast, Rocky 8 is roughly an order of magnitude larger
than Rocky 7 and is similar in size to the MER rovers. Rocky 8 also employs a rocker-bogie six-wheel
configuration, however it is a fully-steered vehicle with all-wheel drive and all-wheel steering.

During testing, we used the CLARAty architecture to provide an interface to low-level control
functions and rover state information. We used two different modes of navigation on the rovers. For
Rocky 7, obstacle avoidance capabilities were not yet available through CLARAty so we simulated a
simple obstacle-avoidance behavior. If an obstacle appeared in the rover path and was in fairly close-
range, we would manually abort the current move command and update the global map to allow the path
planner to select a path around the obstruction. For Rocky 8, we used the GESTALT navigation system
(Goldberg et al., 2002), which is providing obstacle avoidance and navigation capabilities to the MER
rovers. Based on local terrain knowledge, GESTALT decides the best direction for the rover to move that
will allow the rover to efficiently reach its goal waypoint while avoiding obstacles or hazardous terrain.

Several other activities not available at that time were simulated for testing. First, the global map of
the scenario was manually created based on the scenario rock layout in the Mars Yard. Second, science
and communication operations were simulated since these modules are not currently available through the
CLARAty Functional Layer. At each science target, the rover would stop for an appropriate amount of
time, and energy and memory use for each science operation was estimated and reflected in state updates.

During testing, we had the planning and execution software handle the scheduling of both navigation
and science activities. To properly schedule these types of activities a number of operation and resource
constraints are represented and maintained by the planner. Handled constraints include ensuring limited
memory and energy resources are not oversubscribed, ensuring that the rover is in the correct position and

GESTALT: Grid-based Estimation of Surface Traversability Applied to Local Terrain

+

dig2

B: Initial Plan I A: Original Target Map

C: Executed Plan

Figure 3: Sample Scenario Map for a Geological Site Exploration

orientation for science operations, and handling a limited communication window with Earth. The
planning and execution systems also monitored several rover states and resources, including current
position, heading, energy level and memory level.

4.3 Testing Results

Figures 3B and 3C show the results from running Rocky 8 on this testing scenario. Figure 3B shows the
results of initial plan generation. Science-target visits are ordered by the planner’s TSP (Traveling
Salesman Problem) heuristic solver so that the rover is choosing the shortest path allowable by constraints
and based on its current map information. Also, as previously mentioned, more science goals have been
provided to the planner than can be supported by onboard memory and energy levels. Thus, CASPER
excludes a low priority science target from the initial plan due to an energy conflict in order to allow
enough energy to complete the remaining science activities as well as the end-of-day communication
activity, which is performed at the same location as the last science target.

Figure 3B shows the results of plan execution and re-planning. The solid line shows the actual path of
Rocky 8 during scenario execution. The dashed lines show what the rover’s planned path was at different
stages of execution. There are several points of execution where either the CASPER planner or the TDL
executive revised the rover’s plan based on current state and resource information.

The first point of plan revision is during the traverse between the spec2 and image2 targets. During this
traverse the rover encounters several unexpected obstacles that block its path to the next target. The
navigation system causes the rover to veer off its planned path and attempts to find a new route to the goal

location. TDL monitors this path change and iteratively checks how far behind schedule the rover has
fallen. Once TDL estimates the rover will not be able to complete the current move activity within an
allowable time range, it halts the current move and signals to CASPER that the move activity has failed.
CASPER then repairs the plan, taking new map information about the obstacles into account, and finds
that a new target ordering will still achieve all remaining science targets.

The second point of plan revision comes after the completion of the image3 science activity. For each
science activity, an expected duration and resource usage has been encoded in the planner’s model of
rover operations. However, since these values cannot always be accurately predicted, they are monitored
during execution and the planner stands ready to update the plan based on new information. At the
image3 science activity, the Functional Layer simulates that the acquired image data cannot be
compressed as much as originally estimated. The new memory level is forwarded from the CLARAty
Functional Layer to TDL and then to CASPER, which updates the activity plan. This update causes a plan
conflict to arise since now memory will be oversubscribed before the plan is completed. CASPER
resolves this conflict by deleting a later spectrometer read (spec2), which ensures enough memory is
available to collect data at the remaining targets. Again, CASPER deletes a low-priority science activity
and attempts to preserve as many high-priority activities as possible. After the science activity is deleted,
the plan is updated to reflect new traverse routes between science targets.

A third revision occurs during the traverse from image3 to dig2. Another unexpected obstacle is
encountered and GESTALT moves the rover off the planned path. TDL rover monitors progress and
finds that this time there is enough time to avoid the obstruction and no re-planning on CASPER’s part is
required.

The last point of plan revision comes after the completion of the dig1 science activity. This situation is
similar to the previously explained memory over-subscription, however this time the activity uses more
energy than anticipated causing a conflict. Again, CASPER resolves this conflict by deleting one of the
remaining lower-priority science goals whose deletion will release enough energy to successfully
complete the communication activity. The dig2 science activity is deleted and a new path is calculated to
the remaining targets. The remainder of the plan then executes as expected.

4.4 Open Issues

Though testing of this scenario was successful for both rovers, we did encounter a number of issues that
need to be resolved in order to provide a more robust and stable system. Some of these issues are
particular to our approach, however, many of them will apply to the general use of planning and
execution techniques to this application area.

One issue that consistently arose was the planning and execution system’s reliance on accurate position
estimation. This reliance affects not only the estimated durations and power requirements for a traverse
but also affects the system’s determination of whether an activity has completed successfully. There are
several factors contributing to this issue. One factor was that only very limited position estimation
capabilities were available on Rocky 7 and 8 during this testing. Position estimation was based solely on
wheel odometry, which can incur significant drift error, especially when navigating on sand. Currently,
CLARAty is developing a more sophisticated Kalman Filtering based position estimation module and will
include additional sensors such as a Sun sensor and Inertial Measuring Unit. Also planned is the
incorporation of localization capabilities, where the rover will use landmarks in the terrain to better track
its position. Although we can expect some improvements from the estimation software, the issue remains
that planning and execution software cannot expect perfect position estimates and this software must be
flexible enough to operate using uncertain state information. One simple way we added some flexibility to
our plan for this testing was to build in buffer room between activities so that slightly longer-than
expected traverses did not disrupt the overall plan. Development of a more robust and efficient solution to
the problem of shifting a grounded plan (due to overruns or underruns) is an area of future work. We also
added some flexibility in our determination of a successful traverse where the rover was only required to
be in a certain neighborhood of a goal target or waypoint for that traverse to be considered successful.

A second identified issue was that the executive could only be given limited ability to modify the plan
since it had little or no knowledge of many state and resource constraints maintained by the planner.
Currently, it’s up to the domain knowledge encoder to ensure that the executive can only modify the plan
within certain limits to ensure that no operations constraints are violated. In our scenario testing, we
added heuristic knowledge to the executive that defined when it could attempt local fixes and when it
needed to fail an activity and ask the planner to replan. In future work, we plan to expand on this
capability where the planner and executive work more closely together and automatically share any
relevant constraint information.

Another important issue is to address more sophisticated activityhask failures involving exception
handling. For instance, our system should handle science operations failing in different fashions such as
an unsuccessful science data acquisition (e.g., an over-exposed or miss-targeted frame or an unsuccessful
grasping of a rock). While we already have the mechanisms in place to handle retry-type recoveries, such
would be used in the rock example, however procedures for other types of exception handling will likely
require extensions to our current system. For instance, the planning and execution system may need to
closely coordinate with other onboard software that can evaluate whether a science operation was
successful.

5 Current and Future Work

Since the completion of the described testing, we have identified a number of areas for future work and
have already made progress in several of these areas. This section contains a brief discussion of current
work as well as future directions we intend to pursue.

One area of current work is to address the issue of execution-time resource management (Fisher, et al.,
2002). One approach we have taken for this problem is to provide a mechanism for passing resource
limits known by the planner to the executive and also providing a means for the executive to negotiate
with the planner if these bounds are not sufficient. A related function is to provide a capability for
executive tasks that require intermittent use of a resource to share that resource. We have developed a
rapid scheduling algorithm for managing the intermittent allocation of an atomic resource (such as a
camera) to more than one concurrently running task.

A future area of work is to enable TDL procedural capabilities to be accessed by CASPER during plan
generation and repair. This step will enable procedural constructs, such as conditionals, to be easily used
during plan search. These types of constructs are difficult to represent in a declarative representation,
however as previously mentioned, it would be beneficial to have such constructs when reasoning about
certain activity types at the planning level. Eventually, we hope to fully integrate CASPER and TDL,
where both planning and executive functionality use a shared representation and operate on one planning
database. This integration would alleviate the need for two different domain models and would enable
planning and executive capabilities to more easily interact and operate on all levels of activity granularity.

Another area of current work is to provide more realistic map information to the planning and execution
system and to provide automatic updates of this information as the rover traverses. We are currently
working toward having a global map created through multiple panoramic images taken onboard the rover.
Rover maps would be created automatically in the CLARAty Functional Layer and passed to the Decision
Layer where they could be reasoned about using the path-planning module. Automatic map updates
would also enable potential problems to be identified quickly and the activity plan adjusted accordingly.
We are also incorporating different types of path planners into our path-planning system module. This
expansion provides more flexibility to the system by providing different path planning options, which
could be selected based on terrain features or even mission requirements. We are currently working with
the D* path planner (Stentz, 1994), which was developed to provide a real-time capability for generating
optimal paths in a changing environment. We also plan to interact with the TEMPEST path planner
(Tompkins, et al., 2001), which can input additional constraints that affect the path selection process.
Most path planners search for only the shortest path between two points, however there are many other
constraints that may affect path selection for rovers, such as shadowing, communication opportunities,

terrain risk, etc. Constraints that are important for the current rover plan could be identified by the activity
planner and used to focus the path search in TEMPEST.

One last area of future work is to dynamically identify times that new science goals could be added to
the plan. In our past scenario, we focused on how to repair the plan when things went wrong, which
usually resulted in low-priority science activities being discarded from the plan. We would also like our
planning and execution system to be able to handle situations were things go better than expected. For
example, a rover traverse may be much shorter than expected or a new and high-priority science
opportunity could dynamically arise that wasn’t previously identified. In both of these situations the
planning and execution system could improve the quality of the plan by adding in additional science
activities. These could be previously requested science observations that were discarded due to limited
resource availability, or brand new opportunities that rover sensors or onboard data analysis algorithms
have identified as valuable.

6 Related Work

A number of planning and executive systems have been successfully used for robotic applications and
have similarities to the approach we describe in this paper. Most of these approaches have used some
combination of planning and execution, however they differ in not only the behavior of these individual
components, but also in how these systems interface with each and with other system modules.

The Remote Agent Experiment (RAX) (Jonsson, et al., 2000) was flown on the NASA Deep Space One
(DS1) mission. It demonstrated the ability of an AI system to respond to high-level spacecraft goals by
generating and executing plans onboard the spacecraft. The planner in RAX takes as input a schedule
request and produces a flexible, temporal schedule for execution by its executive. A major limitation to
this approach was that planning was only performed in a batch fashion. If re-planning was required, the
spacecraft was “safed” until a new plan had been generated (which could be on the order of hours).
Furthermore, since RAX was applied to a spacecraft, it did not handle issues with surface navigation and
path planning.

Another approach directed towards rover command generation uses a Contingent Planner/Scheduler
(CPS) that was developed to schedule rover-scientific operations using a Contingent Rover Language
(CRL) (Bresina, et al, 1999). CRL allows both temporal flexibility and contingency branches in rover
command sequences. Contingent sequences are produced by the CPS planner and then are interpreted by
an executive, which executes the final plan by choosing sequence branches based on current rover
conditions. In this approach, only the executive is onboard the rover; planning is intended to be a ground-
based operation. Since only a limited number of contingencies can be anticipated, our approach provides
more onboard flexibility to new situations. In the CRL approach, if a situation occurs onboard for which
there is not a pre-planned contingency, the rover must be halted to wait for communication with ground.

Other similar approaches include Atlantis (Gat, 1998), 3T (Bonasso, et al., 1997), and a robotic control
architecture developed at the LAAS-CNRS lab (Alami, et al., 1998) which all use a deliberative planner
and executive (or sequencing component) on top of a set of reactive controllers. These approaches have
distinctly separated planning and execution techniques, and have not closely interacted with navigation
software used for rover missions. Also, the CPEF (Continuous Planning and Execution Framework)
(Myers, 1998) is a similar framework to CLEaR for combining planning and execution. However, CPEF
attempts to cull out key aspects of the world to monitor (as is necessary in general open-world domains).

7 Conclusions

This paper discusses a number of challenges for using planning and execution techniques to provide
autonomous rover capabilities for future NASA missions. We described our approach using an onboard
planning and execution system and explain how it provides capabilities for sequence generation,
execution, monitoring, and re-planning. We also explained how our system interacts with other software

modules such as path planning and low-level control software. Finally we described our experiences with
testing our planning and execution system in providing decision-making capabilities for two JPL rovers.

8 Acknowledgements
The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.

9 References
Alami, R., Chautila, R., Fleury, S . , Ghallab, M., and Ingrand, F., “An Architecture for Autonomy,” International Jounzal of

Robotics Research, 17(4) April, 1998.
Bonasso, R., Firby, R., Gat, E., Kortenkamp, D., Miller, D., and Slack, M., “Experiences with an Architecture for Intelligent,

Reactive Agents,” Journal of Experimental and Theoretical Artificial Intelligence Research, 9(l), 1997.
Bresina, J., Golden, K., Smith, D., and Washington, R., “Increased Flexibility and Robustness of Mars Rovers,” Proceedings of

the Int’l Symposium, on AI, Robotics and Automation for Space, Noordwijk, The Netherlands, June 1999.
Chlen, S . , Knight, R., Stechert, S., Shenvood, R., and Rabideau, G., “Using Iterative Repair to Improve Responsiveness of

Planning and Scheduling,” Proceedings of the 5th Int ’ I Conference on Artificial Intelligence Planning and Scheduling, Breck-
enridge, CO, April 2000.

Estlin, T., Volpe, R., Nesnas, I., Mutz, D., Fisher, F., Engelhardt, B., and Chien, S . “Decision-Making in a Robotic Architecture
for Autonomy,” Proceedings of the Intl Symposium, on AI, Robotics and Automation for Space, Montreal, Canada, June 2001.

Fisher, F., Knight, R., Engelhardt, B., Chien, S., and Alejandre, N., “A Planning Approach to Monitor and Control for Deep
Space Communications,” Proceedings of the 2000 IEEE Aerospace Conference, Big S k y , Montana, March 2000.

F. Fisher, D. Gaines, T. Estlin, S . Schaffer, C. Chauinard, “CLEaR: A Framework for Balancing Deliberation and Reactive
Control,” Proceedings of the AIPS On-line Planning and Scheduling Workshop, Toulouse, France, April 2002

Gat, E.., “ESL: A Language for Supporting Robust Plan Execution in Embedded Autonomous Agents,” Proceedings of the Tenth
National Conference on Artificial Intelligence, San Jose, CA, July 1992.

Goldberg, S. , Maimone, M., and Matthies, L. “Stereo Vision and Rover Navigation Software for Planetary Exploration,”
Proceedings of the 2002 IEEE Aerospace Conference, Big S k y , Montana, Match, 2002.

Jonsson, A., Morris, P., Muscettola, N., Rajan, K., and Smith, B., “Planning in Interplanetary Space: Theory and Practice,”
Proceedings of the Fifh International Conference on Arti3cial Intelligence Planning Systems, Breckenridge, CO, April 2000.

Latombe, J., Robot Motion Planning, New York, Kluwer, 1991.
Mishkin, A., Momson, J., Nguyen, T., Stone, H., Cooper, B., Wilcox, B., “Experiences with Operations and Autonomy of the

Nesnas, I., Volpe, R., Estlin, T., Das, H., Petras, R., and Mutz, D., “Toward Developing Reusable Software Components for

Myers, K. “Towards a framework for continuous planning and execution.” Proceedings of the AAAI 1998 Fall Symposium on

Simmons, R. and Apfelbaum, D., “A Task Description Language for Robot Control,” Proceedings of the Intelligent Robots and

Stentz, A., “Optimal and Efficient Path Planning for Partially-Known Environments,” Proceedings of the IEEE International

Tompkins, P , Stentz, A., and Whitaker, W., “Automated Surface Mission Planning Considering Terrain, Shadows, Resource and

Volpe, R., Nesnas, I., Estlin, T., Mutz, D., Petras, R., Das, H., “The CLARAty Architecture for Robotic Autonomy,” Proceedings

Yen, J., and Jain, A., “ROAMS: Rover Analysis Modeling and Simulation Software,” Proceedings of the Int’l Symposium on AI,

Mars Pathfinder Microrover,“ Proceedings of the 1998 IEEE Aerospace Conference, Aspen, CO, March 1998.

Robotic Applications,” Proceedings of the Int ‘1 Conference on Intelligent Robots and Systems,Maui, Hawaii, Nov 2001.

Distributed Continual Planning, Menlo Park, CA, 1998.

Systems Conference, Vancouver, CA, October 1998.

Conference on Robotics and Automation, San Diego, CA, May 1994.

Time,” Proceedings of the Int’l Symposium on AI, Robotics and Automation in Space, Montreal, Canada, June 2001.

of the 2001 IEEE Aerospace Conference, Big Sky, Montana, March 2001.

Robotics and Automation in Space, The Netherlands, June 1999.

