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NGST baseline WF control approach has several modes of 
operation (see also paper [4850-491). Telescope initialization, 
performed a t  f i r s t  light, cascades f rom Capture through Fine 
Phasing, reducing errors f rom millimeters t o  nanometers. 
Calibration o f  the science instruments establishes the separate 
instrument WF errors and defines the global WFC set points. 
PSFMonitoring wil l  monitor the evolution o f  the WF error 
during science operations, t o  determine when Fine Phasing may 
need t o  be repeated. 
Experiments shown here illustrate performance of several of 
these modes. 
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Coarse AlignmenMegment Focusing in 
Presence of Large Guiding Errors 

Fang Shi 

In i t ia l  telescope Coarse Alignment control uses a Segment Focusing 
algorithm, which scans the  segments t o  find best focus. Nominally, this 
step wil l be performed with the  Fine Guidance System running, keeping 
the  telescope pointed t o  a small fraction of an arcsecond. This 
experiment examines performance in the  unlikely event tha t  Fine 
Guidance is not active during Segment Focusing. It uses simulated 
"Nexus" star images; Nexus was a small, 3-segment version of NGST 
studied as a potential precursor mission. 
The focusing algorithm optimizes a "minimum FWHM" metric, rather 
than the  usual "encircled energy," when dr i f t  is large. This metric 
provides accurate guidance even when the  PSFs are smeared out into 
snaky tracks. 



Focusing Caredon Under Nexus Jitters 

1 -  
focus error near segment best focus 

during a final focus scan, as computed on 

I c ,  

I Picture E I \ /  \ 

Test step: the PSF 
gcts worsc 

This plot  shows segment focus error and 
FWHM during Segment Focusing using the 
modified FWHM metric. Note that  the 
FWHM is correctly estimated, even 
though dri f t  smears the PSF 

I 1 
OL I ,  I 

-006 -004 -003 -002 -001 o 001 002 ’ drifting, snaky PSFs. Focus (mm) 

:St 

)CUS 



t
 
s
 

U
 
0
 

L
 

a 
s

l
 

a 
s
 

.- I- 
t
 

S
 

a L a 
-r 0 
W

 

t
 

S
 

b
 

VI 

t
 

(1) 
L
 

a
 

-r I 
.- 

.- .- 3
 

a 
n, 
0
 

v
)
 

a 
x
 

t
 

U
 
S
 
a
 

0
0
 
S
 
0
 

t
 

v
)
 

n- 

-
 

4
- 

.- 

m
 

0
 

L
 

Y
 

x x
 

3
 
0
 

J
 

t
 

c3 
m

 
S
 

C
IY

- 

a
 
s
 

t
 

Y
- 

O
 

a
 
3
 

b
 

>
 

a 
t
 
3
 

0
 

v
)
 

13 
b
 
a 
s
 

t
 

v
) 
a
 

>
 

m
 

a
 

m
 

S
 

L
 

Y
- 

-
 

-
 

.- 

.- 

e
- 

4
 

Q
 

Y
- 

O
 
S
 

m
 

v
) 

a
 

-r 
t
 

v
)
 

a
 
t
 

b
 

W
 

U
 
S
 

U
 
S
 

CI 
d
 

Y
 
L
 

a
 

-0
 

a
 

.- .- .- 

v
) 

m
 

c
 

3
 
a- 

I 
m

 Q
) 

a- 
cn 
S

 
L
 

Y
- 
a u 
S
 

a L a 
Y

- 
L
 

a
 
t
 

t
 

.- 

.- 

W
 
S
 

a 
L
 

a 
I-
 

v, 
c
 

W
 

t
 

a 
t
 

S
 

H
 

-
 

.- .- 

.- 
U
 

a 
t
 

t
 

0
 

v
)
 

-
 

v
) 

a 
-

Z
T

x
 

t
t

 
e
- 

Y
-
Y

-
 

0
0

 



This experiment uses WCT-2 t o  explore the  accuracy o f  DFS a t  low 
light levels. Exposure was adjusted using neutral density f i l te rs  and 
short exposure times. 

The lowest light level 
f o r  which bFS produced 
a reliable measure of 
piston was a t  about 4% 
o f  nominal. Converting 
DN t o  photon ,flux 
indicates that  SNR-17. 

DFS Raw Image: No ND (100%) 

--- 
Min Pixel = 47, Max Pixel = 6390 

DFS Raw Image: ND = 4% 

--- 
Min Pixel = 46, M& Plxel = 318 

DFS Detection: No ND Filter (1 00%) 

8000 

c 

2000 1 

0.5 0.6 0.7 0.8 
Wavelength (micron) 

DFS Detection: ND Filter = 4% 

400 - 

l oo t  
0% 
0.5 0.6 0.7 0.8 

Wavelength (micron) 



Simulations were carried out using the Nexus NGST precursor mission 
configuration, with meter-class segments, f o r  comparison w i t h  t he  

NEXUS lsFS Modeling: 
- 

DFS Fringe Imaae 

WCT-2 experiments. 

The limiting magnitude f o r  
Nexus DFS t o  reliably detect 
a 200 nm piston error w i th  
exposure times o f  1 sec were: 
*K7V star: M, < 13 mag 
*AOV star: M, < 14 mag 

Longer exposures increase 
the limiting magnitude, but 
j i t t e r ,  dr i f t  , sky background, 
detector dark current may 
limit exposure time. 

100 150 200 250 300 350 
Dispersion (pixel) 

DFS Signals and Fit 

I 1  I I I I I I I I 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 
Wavelength (micron) 

This work was performed t o  explore the limits o f  DFS performance. 
During NGST alignment and phasing, we should be able t o  select our 
observations t o  maximize performance, and can avoid low light imaging. 
See [4850-511 and [4850-591 f o r  fu r ther  details on Coarse Phasing. 
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Before DFS correction: 

DFS Measurcd = -2.959 pin 

IPO + PZT piston= - 3.030 pin 

After DFS correction: 

DFS Mcasured - 0 pin 

IPO Measured = - 0.022 pin 

Before DFS Correction I 

After DFS Clorroctinn. 

DFS Signa 
7 -  "1 - --T - 

& Fit (before) 

With a proven accuracy o f  -6 nm, 
IPO provides an independent method 

f o r  verifying DFS accuracy 

IPO W F a f t e r  
OF5 correction 1 (test) 



Wavef ront Control via MGS Phase 
Retrieval 

Joseph J. Green 

I n  Fine Phasing mode, a Modified Gerchberg-Saxton (MGS) 
phase retrieval algorithm processes def ocussed NIRcam images 
t o  measure a wavefront error map. The WF map is then used t o  
move and deform telescope optics t o  optimize imaging 
performance. 
This experiment explores Fine Phasing accuracy using the WCT-1 
testbed in a sequence of 5 WFS&C iterations. In i t ia l  WF error, 
imparted by the "Telescope Simulator Deformable Mirror" 
(SDM), is small. Corrections are applied using a second, 
"Adaptive Optics DM" (AODM). 



0 1 2 3 4 5 
Control Iteration Count 

PSD of Iteration 5 I PSD of Iteration 0 PSD of Iteration 1 PSD of Iteration 2 PSD of Iteration 3 PSD of Iteration 4 

-10 0 10 -10 0 IO -10 0 10 -10 0 10 -10 0 i o  -10 0 10 

Power Spectral Density (PSD) plots o f  the successive estimates show 
tha t  the AODM is ef fect ive in removing mid spatial-frequency WF 
errors. It clears out a "black hole" surrounding the core o f  the PSF - 
but leaves a "halo" o f  scattered light a t  spatial frequencies beyond 
l / ( twice the actuator spacing), the Nyquist f f o r  the AODM. 
More surprisingly, it leaves a f in i te  (though small) amount o f  low 
spatial-frequency aberration, which is well within the AODM bandpass. 
These low-ferrors re f lect  the noise limits of the WCT, set by: 

-Lab seeing -Vibration 
-System d r i f t s  -Defocus stage repeatability 
-Image centering f o r  MGS -Aliasing induced by WFC 



Removing low-order OPD PSD (iteration 5) OPD PSD (First 15 Zernike Removed) 
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Camera (PRC) and a Zygo interferometer in air have estab ished the  
WF sensing accuracy of the MGS algorithm a t  be t te r  than 3.8 nm 
[4850-531, and i ts  repeatability a t  better than 2.5 nm. 
A new TPF Testbed coming on line soon wil l  permit testing in a 
thermally stabi I ked ,  vacuum environment, eliminating these major 
er ror  sources and further helping define the ultimate limits o f  the 
NGST Fine Phasing techniques [4854-411. 



High Dynamic-Range MGS Wavefront 
sensing 
Dave Cohen 

MGS measure wrapped 
is necessary t o  use 

Phase retrieval algorithms such as the 
phase, o r  phase modulo 2n. For WFC it 
unwrapped WF measurements t o  compute actuator commands. 
We have implemented explicit unwrapping as part o f  MGS, using 
the algorithm of Ghiglia and P r i t t .  
This experiment uses the WCT-2 SbM actuators t o  aberrate 
the WF in a random pattern of about 3.6 h. The MGS algorithm 
is iterated 38 times, with unwrapping applied 3 times, following 
the 9th, 19th and 3,8th iterations. The evolving estimate, and 
the guiding error map, are shown: 
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The capture range o f  MGS with unwrapping is a few waves. When 
sensing in the MIRI a t  a long wavelength (15 um), this provides a 
capture range of -50 um, significantly greater than is required f o r  
nominal NGST operations. See [4850-521 f o r  fu r ther  details. 
We use implicit unwrapping approaches as well, including Prescription 

Retrieval, which drives a ray-trace model t o  match defocussed imagery 
in a classic optimization process. N o  unwrapping is required in this 
approach because the solution surfaces are continuous. 



WF Sensing in Broad-band Light 
Bruce Oean 

Phase retrieval is tolerant o f  blurring ef fects,  such as the  smearing 
tha t  comes with broad-band light, as illustrated in this experiment. 
Defocussing moves the  mapping o f  image t o  pupil into the  geometric 
regime. The intensity variations tha t  signal surface irregularities grow 
in size with defocus, while the  blur "kernel" stays the  same size, and 
so has less overall inf hence on the  estimate. 
I n  this experiment, the  WCT-1 AObM was aberrated with about 1 
wave o f  trefoi l .  Phase retrieval data was taken with 2 filters, one 
narrow band (R-loo), the  other broad-band (R-1.75). The low-f 
estimates tha t  resulted are very close. 
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