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ABSTRACT 

An important aspect of developing models relating 
the number and type offaults in a software system to a set 
of structural measurement is defining what constitutes a 
fault. By definition, a fault is a structural imperfection in 
a software system that may lead to the system’s eventually 
failing. A measurable and precise definition of what 
faults are makes it possible to accurately identijj and 
count them, which in turn allows the formulation of mod- 
els relating fault counts and types to other measurable 
attributes of a software system. Unfortunately, the most 
widely-used definitions are not measurable - there is no 
guarantee that two different individuals looking at the 
same set of failure reports and the same set of fault defini- 
tions will count the same number of underlying faults. 
The incomplete and ambiguous nature of current fault 
definitions adds a noise component to the inputs used in 

1. Introduction 
Unfortunately there is no particular definition of just 

precisely what a software fault is. In the face of this diffi- 
culty it is rather hard to develop meaningful associative 
models between faults and code attributes. In calibrating 
a model, we would like to know how to count faults in an 
accurate and repeatable manner just we would expect to 
enumerate statements, lines of code, and so forth. In 
measuring the evolution of a system to talk about rates of 
fault introduction and removal, we measure in units pro- 
portional to the way that the system changes over time. 
Changes to the system are visible at the module level (by 
module we mean procedures and functions), and we at- 
tempt to measure at that level of granularity. Since the 
measurements of system structure are collected at the 
module level, we also strive to collect information about 
faults at the same granularity. 

A fault, by definition, is a structural imperfection in a 
software system that may lead to the system’s eventually 
failing. In other words, it is a physical characteristic of 
the system of which the type and extent may be measured 
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modeling fault content. r f  this noise component is sufi- 
ciently large, any attempt to develop a fault model will pro- 
duce invalid results. 

As part of our on-going work in modeling software 
faults, we have developed a method of unambiguously iden- 
tifiing and counting faults. Specifically, we base our recog- 
nition and enumeration of software faults on the grammar of 
the language of the software system. By tokenizing the dg- 
ferences between a version of the system exhibiting a 
particular failure behavior, and the version in which 
changes were made to eliminate that behavior, we are able 
to unambiguously count the number offaults associated with 
that failure. With modern configuration management tools, 
the identipcation and counting of software faults can be 
automated. 

using the same ideas used to measure the properties of more 
traditional physical systems. People making errors in their 
tasks introduce faults into a system. These errors may be 
errors of commission or errors of omission. There are, of 
course, differing etiologies for each fault. Some faults are 
attributable to errors in the specification of requirements. 
Some faults are directly attributable to error committed in 
the design process. Finally, there are faults that are intro- 
duced directly in to the source code. There are two major 
types. There are faults of commission and faults of omis- 
sion. Faults of commission involve implementing code that 
is not part of the specification or design. Faults of omission 
involve lapses wherein a behavior specified in the design 
was not implemented. 

In order to count faults, there must be a well-defined 
method of identification that is repeatable, consistent, and 
identifies faults at the same level of granularity as our static 
source code measurements. In a careful examination of 
software faults over the years, we have observed that the 
overwhelming number of faults that are recorded as code 
faults are really design faults. Some software faults are 
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really faults in the specification. The design implements 
the specification and the code implements the design. We 
must be very careful to distinguish among these fault 
categories. 

There may be faults in the specification. The specifi- 
cation may not meet the customer’s needs. If this problem 
first manifests itself in the code, it still is not a code fault. 
It is a fault in the program specification or a specification 
fault. The software design may not implement the soft- 
ware requirements specification. Again, these design 
problems tend to be made manifest during software test- 
ing. Any such design faults must be identified correctly 
as design faults. In a small proportion of faults, the prob- 
lem is actually a code problem. In these isolated cases, 
the problem should be reported a code fault. 

We observed an example of this type of problem re- 
cently in a project on a large embedded software system. 
The program in question was supposed to interrogate a 
status register on a particular hardware subsystem for a 
particular bit setting. The code repeatedly misread this 
bit. This was reported as a software problem. What 
really happened was that the hardware engineers had im- 
plemented a hardware modification that shifted the posi- 
tion of the status bit in the status register. They had failed 
to notify the software developers of this material change 
in the hardware specification. The software system did 
exactly what it was supposed to do. It is just that this no 
longer met the hardware requirements. Yet the problem 
remains on record to this date as a software fault. 

2. Related Work 
The following definition of what constitutes a fault is 

typical of that provided by current standards: “A manifes- 
tation of an error in software. A fault, if encountered, 
may cause a failure” [IEEE88, IEEE831. This establishes 
a fault as a structural defect in a software system that un- 
derlies the failure of that system to operate as expected, 
but does not help in determining the type of failure that 
was observed, or establish how individual faults may 
identified or measured. Some standards address the issue 
of the type of failure observed by describing schemes for 
classifying anomalies recorded during software develop- 
ment and operation. For instance, [IEEE93] provides 
details of an anomaly classification process, as well as 
criteria for classifying the type of anomaly observed, at 
what point in the development process the anomaly was 
observed, and the action taken in response to the anomaly. 
For example, Table 3c in this standard allows classifica- 
tion of the type of behavior exhibited by the anomaly 
(e.g., “precision loss”) or the type of defect that led to the 
anomaly (e.g., “referenced wrong data variable”). This 
type of scheme is helpful in determining the underlying 
causes of faults and failures, so that the development 
process may be modified to 1) identify the types of faults 

on which fault detection and removal resources should be 
focused for the current development effort, and 2) minimize 
the introduction of the most common types of faults in fu- 
ture development tasks. However, classification standards 
do not provide enough information to help count the number 
of faults in the system. Returning to Table 3c of [IEEE93], 
we see that some of the anomaly types can readily be traced 
to a single fault (e.g., “Operator in equation incorrect”). 
However, the response an “I/O Timing” anomaly may in- 
volve changes to many lines of source code spread across 
multiple source code files. In this case, the standard does 
not provide enough information to allow counting the num- 
ber of faults at the module level. 
An ad-hoc fault taxonomy was developed by the authors in 
[Niko97] and [Niko98] in an attempt to provide an unambi- 
guous set of rules for identifying and counting faults. The 
rules were based on the types of changes made to source 
code in response to failures reported in the system. Al- 
though the rules provided a way of classifying the faults by 
type, and attempted to address faults at the level of individ- 
ual modules, they were not suMicient to enable repeatable 
and consistent fault counts by different observers to be 
made. The rules in and of themselves were unreliable. 
Orthogonal Defect Classification (ODC), initially reported 
in 1992 [Chi192], provides a framework for 1) identifying 
defect types and the sources of error in a software develop- 
ment effort, 2) determining the effectiveness of the different 
defect detection techniques and strategies used by the or- 
ganization, and 3) using the feedback provided by analysis 
of the defects to help the organization reduce the number of 
defects it inserts into its systems. Like [IEEE93], ODC pro- 
vides a scheme for classifying defects, which is useful in 
identifying sources of error at different points in the devel- 
opment process. However, it does not seem to possible to 
use the classification scheme to consistently count faults at 
the module level. The recognition process for defects is not 
sufficiently well defined to permit the automatic recognition 
of these defects. 
In [Fran98], Frankl et al. develop a model for evaluating test 
methods by the delivered reliability of the system. The as- 
pect of that work relevant to this paper is the rejection of the 
traditional notion of faults in favor of the idea of failure re- 
gions (“a collection of failure inputs that some change fixes 
exactly”). Frankl et al. observe that faults have no unique 
characterization - a software component fails for some test- 
set, and is then changed so that it succeeds on that testset. A 
simple example illustrates the concept: suppose we have a 
program composed of two functions, A and B. Function A 
computes a real number, and then calls function B to com- 
pute the square root of that number. If the value computed 
by A is less than 0, the program will fail. There are two 
changes that can be made - either A can be changed so that 
it never passes a value less than 0 to B (e.g., call B only if 
the value is not negative), or B can be changed so that nega- 
tive input values will not cause it to fail (e.g., compute the 



square root of the input's absolute value). We agree that 
faults do not necessarily have a unique characterization. 
However, our experience with development efforts indi- 
cates that there is often one set of acceptable repair ac- 
tions that is noticeably less costly than the alternatives, 
both in terms of the number of affected components and 
total amount of changes made. Based on our experience, 
we assume that in a production development environment, 
developers will seek the least costly alternatives that they 
believe will effect the required repairs in order to main- 
tain the required delivery schedule. Under this assump- 
tion, we can consider the repair actions to be unique, 
which we can then use as the basis of a meaningful fault 
count. 

3. Recognizing Software Faults 
Perhaps one of the most important considerations in 

the measurement of software faults is the ability to scale 
the fault. Not all faults are equal. The software fault size 
description problem is very similar to that confronted by 
civil engineers in the construction of a building. When 
structural concrete is poured to form the columns of a 
building, some voids will naturally occur in the concrete. 
There are big voids and there are little voids. All voids 
may potentially weaken the structure. Two factors must 
be considered in the determination of the structural con- 
sequences of voids in the pour. First, there is the amount 
of stress in the vicinity of the void. Second, there is the 
volume of the void. A small void in a highly stressed 
location will make the building unacceptable weak. A 
large void in the surface of a column may simply create 
visual problems. 

Software faults, just like voids in concrete, also are 
large or small. The term, fault, has a size component just 
as does a structural void in the concrete pour. Sometimes 
a simple operator is at fault. The developer used a "+" 
instead of a "-". Sometimes two or three statements must 
be modified, added, or deleted to remedy a single fault. 
The subject of this paper is the identification and enu- 
meration of faults that occur in source code. We ought to 
be able to do this mechanically. That is, it should be pos- 
sible to develop a tool that could count the faults for us. 
Further, some program changes to fix faults are substan- 
tially larger than are others. We would like our fault 
count to reflect that fact. If we have accidentally mis- 
typed a relational operator like '<I instead of '>I , this is 
very different from having messed up an entire predicate 
clause from an if statement. The actual changes made to 
a code module are tracked for us in configuration control 
systems such as rcs or cvs [Cede931 as code deltas. We 
must learn to classify the code deltas that we make as to 
the origin of the fix. In other words, each change to each 
module should reflect a specific code fault fix, a design 
problem, or a specification problem. If we manifestly 
change any code module, significantly change it, and fail 

to record each fault as we repaired it, we will pay the price 
in losing the ability to resolve faults for measurement pur- 
poses. 

We will base our recognition and enumeration of soft- 
ware faults on the grammar of the language of the software 
system. Specifically, faults are to be found in statements, 
executable and non-executable. In the C programming lan- 
guage we will consider the structures shown in Figure 1 
below to be executable statements. 

<executable-statement> ::= <labeled-statement> I 
<expression> I 
<selection-statement> I 
citeration-statement> I 
cjump-statement> 

Figure 1 - Executable Statements in C 

In very simple terms, these structures will cause our execu- 
table statement count, Exec, to change. If any of the tokens 
change that comprise the statement then each of the change 
tokens will represent a contribution to a fault count. 

Non-executable statements are shown below in Figure 2: 

<declaration> : := <declaration-specifiers> ; 
I <declaration-specifiers> <init-declarator-lisp I;' 

Figure 2 - Non-executable Statements in C 

We will fmd faults within these statements. The granularity 
of measurement for faults will be in terms of tokens that 
have changed. Thus if one had typed the following state- 
ment in C: 

a = b + c * d ;  
but had meant to type 

a = b + c 1 d; 
then there is but one incorrect token. In this example, there 
are eight tokens in each statement. There is one token that 
has changed. There is one fault. This circumstance is very 
different when wholesale changes are made to the statement. 
Suppose that this statement 

was changed to 

We are going to assume, for the moment, that the second 
statement is a correct implementation of the design and that 
the first was not. This is clearly a not coding error. (Gener- 
ally when changes of this magnitude occur they are design 
problems.) In this case there are 8 tokens in the first state- 
ment and 15 tokens in the second statement. This is a fairly 
substantial change in the code. Our fault recording method- 
ology should reflect the degree of the change. 

The important consideration with this fault measurement 
strategy is that there must be some indication as to the 
amount of code that has changed in resolving a problem in 
the code. We have regularly witnessed changes to tens or 

a = b + c  * d; 

a = b + (c * x) + sin(z); 



even hundreds of lines of code recorded as a single “bug” 
or fault. The only measurable index of the degree of the 
change is the number of tokens that have changed to ame- 
liorate the original problem. To simplify and disambigu- 
ate further discussion, consider the following definitions. 

Definition: A fault is an invalid token or bag of tokens in 
the source code that will cause a failure when the com- 
piled code that implements the source code token is exe- 
cuted. 

Definition: A failure is the departure of a program from 
its specified functionalities. 

Definition: A defect is an apparent anomaly in the pro- 
gram source code. 

4. Counting Software Faults 
Each line of text in each version of the program can be 

seen as a bag of tokens. That is, there may be multiple 
tokens of the same kind on each line of the text. When a 
software developer changes a line of code in response to 
the detection of a fault, either through normal inspection, 
code review processes, or as a result of a failure event in a 
program module, the tokens on that line will change. 
New tokens may be added. Invalid tokens may be re- 
moved. The sequence of tokens may be changed. Enu- 
meration of faults under this definition is simple, straight- 
forward. Most important of all, this process can be auto- 
mated. Measurement of faults can be performed very 
precisely, which will eliminate the errors of observation 
introduced by existing ad hoc fault reporting schemes. 

An example would be useful to show this fault meas- 
urement process. Consider the following line of C code. 

(1) a = b + c ;  
There are five tokens on this line of code. They are B1 = 
{<a>, <=>, <b>, <+>, <c>) where B1 is the bag represent- 
ing this token sequence. Now let us suppose that the de- 
sign, in fact, required that the difference between b and c 
be computed: 

There will again be five tokens in the new line of code. 
This will be the bag B2 = {<a>, <=>, <b>, <->, <c>}. 
The bag difference is Bl - B2 = {<+>, <-> }. The cardi- 
nality of B1 and B2 is the same. There are two tokens in 
the difference. Clearly, one token has changed from one 
version of the module to another. There is one fault. 

Now let us suppose that the new problem introduced 
by the code in statement (2) is that the order of the opera- 
tions is incorrect. It should read: 

(3) a = c - b ;  
The new bag for this new line of code will be B3 = {<a>, 
<=>, <c>, <->, <b>}. The bag difference between (2) 
and (3) is B2 - B3 = { }. The cardinality of BZ and B3 is 
the same. This is a clear indication that the tokens are the 

(2) a =  b - c ;  

same but the sequence has been changed. There is one fault 
representing the incorrect sequencing of tokens in the source 
code. 

Now, to continue the example above, let us suppose that 
we are converging on the correct solution however our cal- 
culations are off by l .  The new line of code will look like 
this. 

(4) a = l + c - b ;  
This will yield a new bag B4 = {<a>, <=>, <l>, <+>, <c>, 
<->, Q>}. The bag difference between (3) and (4) is B3 - 
B4 = { < 1 >, <+>}. The cardinality of B3 is five and the car- 
dinality of B4 is seven. Clearly there are two new tokens. 
By definition, there are two new faults. 

It is possible that a change will span multiple lines of 
code. All of the tokens in all of the changed lines so 
spanned will be included in one bag. This will allow us to 
determine just how many tokens have changed in the one 
sequence. 

The source code control system should be used as a ve- 
hicle for managing and monitoring the changes to code that 
are attributable to faults and to design modifications and 
enhancements. Changes to the code modules should be dis- 
crete. That is, multiple faults should not be fixed by one 
version of the code module. Each version of the module 
represents should represent exactly one enhancement or one 
defect. 

5. Examples 
We will take a simple example and trace the evolution of 

a source code program through three successive revisions 
through the UNIX rcs program. The sample program is 
from Table 2 repeated here (with added line numbers for 
future reference). 

1 int Sum(int upper) 
2 {  
3 int sum = 0; 
4 int index = 0; 
5 
6 label: 
7 if(index < upper) 

9 
10 

index++; 
sum = sum + index: 

8 {  

11 goto label; 
12 1 
13 return sum; 
14 1 

Figure 3 - Sample Program 

Figure 3 above represents version 1.1 of the program. Suc- 
cessive updates to this will be 1.2, 1.3, etc. The rcs system 
will keep track of the version number, the date and time of 
the update, and the author of the rcs activity. An abridged 
version of the rcs module structure to record these data is 
shown in Table 1 below. 



I 1.4 
date 2005.02.01.22.17.38; author John Doe; 
next 1.3; 

5.01.22.22.01.31; author John Doe; 

Table 1 - Change History 

For rcs, the most recent version, in this case 1.4, is kept at 
the top of the list and the list is numbered chronologically 
backwards in time. Each version keeps a pointer to the 
next version in the table. 

The actual changes to the source code at each version 
are shown in Table 2 below. The rcs program will always 
keep the most recent version in the file. This is shown in 
the table entry beginning with, in this case, version 1.4. 
The second entry in the record for version 1.4 is an entry 
beginning with the word log and delimited by @'s. This 
is the log comment introduced by the developer. In our 
proposed model this log entry would begin with the word, 
fault, if the version increment were attributable to a fault 
fix or the word, change, if it were attributable to a change 
in design or requirements. The initial log entry, version 
1.1, is for neither a change nor a fault fix but is the title of 
the program. 

-0g 
@fault: fixed relational operator 
@ 
Text 
@int Sum(int upper) 
L 

int sum = 0; 
int index = 0; 
label: 

{ 
if(index > upper) 

index++; 
sum = sum + index; 
goto label; 

1 
update (index); 
Return sum; 

@ 
1.3 
Log 
@fault: inserted call to update function 
@ 
Text 

a7 1 
if(index c= upper) 

1.2 

@fault: found a problem with a relational operator 
Log 

6 
Text 
@d13 1 

Log 
@Initial revision - 
@ 
Text 
@dl 1 
a7 1 

if(index c upper) 

Table 2 - Sample Program Versions 

Following the log entry is the text entry. In the case of 
rcs, the topmost text entry is the most recent version of the 
program. Each of the subsequent table entries shows the 
changes that must be made to the most recent program to 
change it to a previous version. All changes are made, in 
rcs, by adding or deleting whole lines. Thus, to retum to 
version 1.3 from version 1.4, the text part of record 1.3 tells 
us to go to line 7 (relative to 1) of the program and delete 
one line. That is what the line d7 1 tells us. The next text 
line says that we must add one line, a7 1, again at line 7. 
The text that must be added is on the following line. Thus, 
version 1.3 will have the appearance shown in Figure 4 be- 
low. 

Line number 7 has been changed on version 1.3. Let 
B2 = { <iP, <(>, <index>, <<=>, <upper>, <)>}. 

represent this bag of tokens. On version 1.4 the bag of to- 
kens is 

The bag difference is B2 - B1 = I<<=>, o>}. The cardi- 
nality of B2 is 6 and the cardinality of Bl is 6. The cardinal- 
ity of the bag difference is two. Therefore, one token has 
changed and we will record one fault. 

To retum to version 1.2 from version 1.3 we see that we 
must delete line 13. All of the tokens on this line were place 
there in remediation of a fault. The bag representing this 
line of tokens is 

There are five tokens on this line. There was no former ver- 
sion of this line in version 1.2. Therefore all of the tokens 
on this line were put into the program to fix a defect in the 
program. We will then record 5 faults for this fix. 

Finally, to return to the initial version, 1.1, of the pro- 
gram we must delete line 7 and add a new line represented 
by the bag 

BI = {<iD, <(>, <index>, e>, <upper>, e)>}. 

B3 = {<update>, <(>, <index>, <)>, <;> } . 

B4 = { 46, <(>, <index>, <<>, <upper>, <)>} . 



This is similar to the transition between versions 1.3 and 
1.4. Only one token has changed. We will record one 
fault for this module version. 

I int Sum(int upper) 
2 {  
3 int sum = 0; 
4 int index = 0; 
5 
6 label: 
7 if(index <= upper) 
S I  
9 
10 
11 goto label; 
12 1 
13 update (index); 
14 return sum; 

index++; 
sum = sum + index; 

15 I 
Figure 4 - Sample Program, Version 1.3 

6. Current Application 
The fault definition given above is currently being 

applied to a JPL software development effort. The goal 
of this effort is to extend previous work in identifying 
relationships between measurements of the system's 
structural evolution and the number and type of faults 
inserted into the system during its development. 

Structural measurements are obtained in a straightfor- 
ward manner, as described in WikoOl]. For the system 
being investigated, we are fortunate in having the problem 
reporting system integrated with the configuration 
management repository. For each failure reported 
through the system, a "change package" is automatically 
opened in the repository. Developers then check repairs 
into the change package, and commit the completed 
change package to the repository when the repairs have 
been completed. In this way, it is possible to identify the 
changes that were made in response to each failure that 
was reported. 

Using the fault definition presented above in conjunc- 
tion with the information about the repairs that were 
made, we are able to analyze the differences between the 
modules associated with a failure and the repaired ver- 
sions of those modules, and count the number of faults. 
The configuration management system we are using to 
track the system's history, cvs, can generate reports iden- 
tifying the version in which each line was inserted into the 
system. A fragment of this type of report is shown below 
in Figure 5 .  The leftmost numbers indicate the version in 
which each line was inserted. We use this capability to 
determine the version into which each fault was inserted. 
Since we have a complete history of the system's struc- 
tural evolution, we can determine for each module in the 
system the amount of change that occurred between each 
group of faults inserted into that module, and thereby de- 
termine an empirical distribution of the number of faults 
inserted per unit change. We are currently extracting the 

fault information from the more than 6000 affected mod- 
ules, and will be using this information over the next several 
months to: 

Determine empirical distributions relating the number of 
faults inserted to the amount of structural change relat- 
ing to the software. 

Identify relationships between different types of struc- 
tural change (as indicated by the domain scores measur- 
ing structural change) and the number of faults inserted. 

Identify relationships between the type of fault inserted 
and the type of structural change that was made. 

1.28 (iim 21-Mar-01): int watcher-parse-wrench-options (char * args) 
1.28 (iim 21-Mar-01): ( 
1.28 (iim 21-Mar-Ol): RListOfRBuf * options; 
1.28 (iim 21-Mar-Ol): RListOfRBufEntry * option-entry; P An entry in the list of options. 7 
1.31 (man 04-May-01): RListOfRBuf * option-parts; I' Option entry broken into name and value. */ 
1.28 (iim 21-Mar-Ol): RListOfRBufEntry * option-name: P The Name of the current option. 'I 
1.28 (iim 21-Mar-01): RListOfRBufEntry * option-Val: 
1.31 (matt 04-May-01): 
1.28 (iim 21-Mar-Ol): ENode * command-line; 
1.31 (man 04-May-01): int well-formed =TRUE: P 1s this set of options well-formed? */ 
131  (matt 04-Mav-01): 

P The separated options. */ 

P The Value (fi applicable) of the 

P Node containing command line options. *I 
* Current option. */ 

1.28 i i m  21-Ma&):' 
1.35 fcMy 23-Jan-02): oDlions = rsksDlit fams. .:I. 0): 
1.28 him-21-Mar-01): uxnmand-line='walcheCwnflg_get-command-~ne 0: 
1.28 (iim 21-Mar-01): 
1.28 (iim 21-Mar-01): RLlST FOREACH loDtions. oDtion entrv) . .  . .  - ,, 
1.28 i i m  21-Mar-Olj: ( - 
1.35 (cory 23-Jan-02): 
1.28 (iim 21-Mar-01): 
1.28 (iim 21-Mar-01): 

optban-parts = rbutsplit (option-entrysbuf. "=", 1); 
option-name = rlist-nth (option-parts. 0): 
option-val = rlist-nth (option-parts, 1): 

1.28 (iim 21-Mardl): 
1.31 (man 04-May-01): 
1.29 (iim 23-Mar-01): 
1.28 (iim 21-Mar-01): 
1.28 (iim 21-Mar-Ol): 
1.31 (matt 04-May-01): 
1.29 fjim 23-Mar-01): 
1.28 (iim 21-Mardl): 
1.28 (iim 21-Mar-Ol): 
1.29 (iim 23-Mar-01): 
1.28 (iim 21-Mar-01): 
1.28 (iim 21-Mar-01): 
1.31 (matt 04-May-01): 
1.31 (man MMay-Ol): 
1.28 (iim 21-Mar-01): 
1.28 (iim 21-Mar-Ol): 
1.29 (iim 23-Mardl): 
1.31 (man 04-May-01): 
1.28 (iim 21-Mar-Ol): 
1.28 (iim 21-Mar-01): 
1.29 (iim 23-Mar-01): 
1.28 (iim 21-Mar-Ol): 

if (rbuf-equal-str (option-name->buf. "allow-nodrivers")) 

P Wrench will want to be able to start watcher up before any 

enode-attrib-str (command-line, 'allow-nodrivers', 'true'); 
printf c' Will allow starting without drivers..\n"); 

else W (rbuf-equal-str (option-name-zbuf, 'only-transport')) 
1 

( P  Wrench wants to start watcher with only the specif~ed transport 

( 

* drivers are installed. */ 

* (ie, most likely a unix socket or something, to send it commands 
*without trying to connect to any GUls) 'I 

printf (%nly-transport requires a valua.\n"): 

break: 

1 (NULL == option-Val) 
( 

well-formed = FALSE; 

1 
enode-anrib (command-line, "only-transpoK, option-val->buf); 

1 

Figure 5 - CVS Annotation 

7. Discussion and Future Work 
We have proposed a definition of software faults that can 

be applied to source code. The definition allows faults to be 
unambiguously measured at the level of individual modules. 
Since faults are measured at the same level at which struc- 
tural measurement are taken, it becomes more feasible to 
construct meaningfid models relating the number of faults 
inserted into a software module to the amount of structural 
change made to that module. Because of the way in which 
faults are defined, the task of counting faults is easily auto- 
mated, making it much more practical to analyze large soft- 
ware systems such as those developed to support NASA 
flight missions. In other words, the faults may be quantified 
by a software tool that can analyze the deltas in code mod- 



ules maintained by the configuration control system and 
measure those changes specifically attributable to failure 
reports. 

We are currently working with a task whose goal is the 
development of a comprehensive set of on-board control 
and ground support software components that can be 
adapted from mission to mission. We have in hand the 
complete structural history of the software that has been 
developed to date. For each of the more than 1000 re- 
ported failures, we know the set of modules that affect the 
repair, as well as the versions of those modules. 
It is clear that noise in the fault measurements may have a 
significant effect on our results, so it will be necessary to 
quantify it as accurately as possible. In the section “Cur- 
rent Application”, we have described the way in which 
the failure reporting and tracking system is integrated into 
the configuration management system. A significant 
source of noise could involve developers making en- 
hancements to the system at the same time they are re- 
sponding to a reported failure. In this case, the enhance- 
ments would be counted as repairs made in response to 
the failure. Part of our analysis must involve selecting an 
appropriate subset of the reported failures and interview- 
ing developers about the changes made in response to 
those failures. We must be carefkl to select representative 
failures from all system components to control for the 
noise inserted by each development team. We must also 
select reported failures from different times during the 
development effort, to determine whether the number of 
enhancements reported as fault repair changes over time. 
As mentioned above, the determination of when a fault 
was initially inserted into a component is based on the 
ability of the revision control system to identify the ver- 
sion in which each line first appeared in the module. For 
faults whose repair involves removing or modifying a 
line, determination of when the fault was introduced into 
the module is straightforward. However, if the repair 
activity involves adding a line, determining the version 
into which the fault was inserted is more complicated. 
We need to examine the context in which the repair is 
made to determine the first version of the module in 
which the absence of the line would have constituted a 
fault. As an approximation, we can determine when the 
lines bounding the repair first appeared in the module. 
For instance, suppose that repairing module A involves 
adding one line between lines 99 and 100 of version 11. 
The new line now becomes line 100, and line 100 be- 
comes line 10 l .  After committing the change to the re- 
pository as version 12, we can use the revision control 
system’s reporting capabilities to identify the first version 
in which both lines 99 and 101 appear - we will take this 
version to be the one in which the fault originally oc- 
curred. 

Note that this approximation may not always accu- 
rately indicate the version in which a fault was intro- 

duced. Consider 2 modules, A and B. Module A computes 
a real number and passes it to module B, which determines 
the square root of that number and returns that value. Ver- 
sions 1-4 of module A are constrained to return values 
greater than or equal to 0, and because of that constraint, 
module B does not test the input to determine whether it is 
less than 0. However, a change in the requirements removes 
module A’s constraint in later versions. Suppose that at the 
same time that version 5 of module A is created, version 2 
of module B is created in response to a request to change the 
formatting of its output, but that no provision is made to 
determine whether its input is less than 0. We later discover 
that module B does not respond as expected to inputs from 
module A, and we change module B to first test the input 
value before extracting the square root. In this situation, we 
see that the fault was inserted at the same time that version 2 
of module B was created, although the approximation de- 
scribed above would indicate that the initial version of mod- 
ule B contained the fault. Only a detailed examination of a 
selected subset of the failure reports with which we are 
working will be able to indicate the amount of uncertainty 
introduced by this approximation. 

Finally, we wish to expand the categorization of fault 
types in future work. The categorizations we have provided 
above are quite simple - addition or removal of tokens, as 
well as a limited capabilities to detect tokens that have 
changed value or execution order. We would like to im- 
prove our ability to detect these types of changes. 

The technique described above does not currently allow 
us to identify all situations in which a given token has been 
replaced by another, which may lead to undercounting the 
number of faults that have been corrected. Consider the 
following example, for which the original statement is: 

which is changed during repair to 

The six tokens representing (5) is B5 = {<a>, <=>, <b>, 
<+>, <c>}, and the eight tokens representing (6)  is B6 = 
{<a>, <=>, <b>, <->, <c>, <+>, <d>}. We see that what 
has happened is that <+> in (5) has been changed to <-> in 
(6), and that <c>, <+>, and <d> have been added in (6). 
However, the bag difference B6 - B5 = {<->, <d>}, indicat- 
ing the addition of two new tokens, but failing to indicate 
that one token was replaced by another. We are currently 
developing the techniques that will be necessary to deal with 
this issue. 

The technique also does not identify the number of to- 
kens that have been reordered. Consider again the situation 
illustrated by comparing (2) and (3). We see that the order- 
ing of <b> and <c> has changed from (2) to (3), for which 
we could count 2 faults. However, our examination of the 
bag difference leads only to the conclusion that at least 1 
token has changed, for which we count 1 fault according to 
our definition. In this situation, our definition could again 
lead to undercounting the number of faults repaired. 

(5) a = b + c ;  

(6) a = b - c + d ;  



We would also like to provide a more detailed categoriza- 
tion - for example, we could count the number of tokens 
for which the execution ordering was changed. Finally, 
w e  might wish to distinguish between those changes made 
in a condition controlling the execution of a block of 
statements, as opposed to changes made in other executa- 
ble statements. 
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ABSTRACT 

An important aspect of developing models relating 
the number and type of faults in a software system to a set 
of structural measurement is defining what constitutes a 
fault. By definition, a fault is a structural imper$ection in 
a software system that may lead to the system’s eventually 
failing. A measurable and precise definition of what 
faults are makes it possible to accurately idenhfi and 
count them, which in turn allows the formulation of mod- 
els relating fault counts and types to other measurable 
attributes of a software system. Unfortunately, the most 
widely-used definitions are not measurable - there is no 
guarantee that two different individuals looking at the 
same set of failure reports and the same set of fault dejni- 
tions will count the same number of underlying faults. 
The incomplete and ambiguous nature of current fault 
definitions adds a noise component to the inputs used in 

1. Introduction 
Unfortunately there is no particular definition of just 

precisely what a software fault is. In the face of this diffi- 
culty it is rather hard to develop meaningful associative 
models between faults and code attributes. In calibrating 
a model, we would like to know how to count faults in an 
accurate and repeatable manner just we would expect to 
enumerate statements, lines of code, and so forth. In 
measuring the evolution of a system to talk about rates of 
fault introduction and removal, we measure in units pro- 
portional to the way that the system changes over time. 
Changes to the system are visible at the module level (by 
module we mean procedures and functions), and we at- 
tempt to measure at that level of granularity. Since the 
measurements of system structure are collected at the 
module level, we also strive to collect information about 
faults at the same granularity. 

A fault, by definition, is a structural imperfection in a 
software system that may lead to the system’s eventually 
failing. In other words, it is a physical characteristic of 
the system of which the type and extent may be measured 
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modeling fault content. If this noise component is su@- 
ciently large, any attempt to develop a fault model will pro- 
duce invalid results. 

As part of our on-going work in modeling software 
faults, we have developed a method of unambiguously iden- 
tiJLing and counting faults, Speci$cally, we base our recog- 
nition and enumeration of sojhvare faults on the grammar of 
the language of the software system. By tokenizing the dif- 
ferences between a version of the system exhibiting a 
particular failure behavior, and the version in which 
changes were made to eliminate that behavior, we are able 
to unambiguously count the number of faults associated with 
that failure. With modern configuration management tools, 
the idenh$cation and counting of software faults can be 
automated. ‘ 

using the same ideas used to measure the properties of more 
traditional physical systems. People making errors in their 
tasks introduce faults into a system. These errors may be 
errors of commission or errors of omission. There are, of 
course, differing etiologies for each fault. Some faults are 
attributable to errors in the specification of requirements. 
Some faults are directly attributable to error committed in 
the design process. Finally, there are faults that are intro- 
duced directly in to the source code. There are two major 
types. There are faults of commission and faults of omis- 
sion. Faults of commission involve implementing code that 
is not part of the specification or design. Faults of omission 
involve lapses wherein a behavior specified in the design 
was not implemented. 

In order to count faults, there must be a well-defined 
method of identification that is repeatable, consistent, and 
identifies faults at the same level of granularity as our static 
source code measurements. In a careful examination of 
software faults over the years, we have observed that the 
overwhelming number of faults that are recorded as code 
faults are really design faults. Some software faults are 
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really faults in the specification. The design implements 
the specification and the code implements the design. We 
must be very careful to distinguish among these fault 
categories. 

There may be faults in the specification. The specifi- 
cation may not meet the customer’s needs. If this problem 
first manifests itself in the code, it still is not a code fault. 
It is a fault in the program specification or a specification 
fault. The software design may not implement the soft- 
ware requirements specification. Again, these design 
problems tend to be made manifest during software test- 
ing. Any such design faults must be identified correctly 
as design faults. In a small proportion of faults, the prob- 
lem is actually a code problem. In these isolated cases, 
the problem should be reported a code fault. 

We observed an example of this type of problem re- 
cently in a project on a large embedded software system. 
The program in question was supposed to interrogate a 
status register on a particular hardware subsystem for a 
particular bit setting. The code repeatedly misread this 
bit. This was reported as a software problem. What 
really happened was that the hardware engineers had im- 
plemented a hardware modification that shifted the posi- 
tion of the status bit in the status register. They had failed 
to notify the software developers of this material change 
in the hardware specification. The software system did 
exactly what it was supposed to do. It is just that this no 
longer met the hardware requirements. Yet the problem 
remains on record to’ this date as a software fault. 

2. Related Work 
The following definition of what constitutes a fault is , 

typical of that provided by current standards: “A manifes- 
tation of an error in software. A fault, if encountered, 
may cause a failure” [IEEE88, IEEE831. This establishes 
a fault as a structural defect in a software system that un- 
derlies the failure of that system to operate as expected, 
but does not help in determining the type of failure that 
was observed, or establish how individual faults may 
identified or measured. Some standards address the issue 
of the type of failure observed by describing schemes for 
classifying anomalies recorded during software develop- 
ment and operation. For instance, [JEEE93] provides 
details of an anomaly classification process, as well as 
criteria for classifying the type of anomaly observed, at 
what point in the development process the anomaly was 
observed, and the action taken in response to the anomaly. 
For example, Table 3c in this standard allows classifica- 
tion of the type of behavior exhibited by the anomaly 
(e.g., “precision loss”) or the type of defect that led to the 
anomaly (e.g., “referenced wrong data variable”). This 
type of scheme is helpful in determining the underlying 
causes of faults and failures, so that the development 
process may be modified to 1) identify the types of faults 

on which fault detection and removal resources should be 
focused for the current development effort, and 2) minimize 
the introduction of the most common types of faults in fu- 
ture development tasks. However, classification standards 
do not provide enough information to help count the number 
of faults in the system. Returning to Table 3c of [EEE93], 
we see that some of the anomaly types can readily be traced 
to a single fault (e.g., “Operator in equation incorrect”). 
However, the response an “VO Timing” anomaly may in- 
volve changes to many lines of source code spread across 
multiple source code files. In this case, the standard does 
not provide enough information to allow counting the num- 
ber of faults at the module level. 
An ad-hoc fault taxonomy was developed by the authors in 
[Niko97] and Biko981 in an attempt to provide an unambi- 
guous set of rules for identifying and counting faults. The 
rules were based on the types of changes made to source 
code in response to failures reported in the system. Al- 
though the rules provided a way of classifying the faults by 
type, and attempted to address faults at the level of individ- 
ual modules, they were not sufficient to enable repeatable 
and consistent fault counts by different observers to be 
made. The rules in and of themselves were unreliable. 
Orthogonal Defect Classification (ODC), initially reported 
in 1992 [Chi192], provides a framework for 1) identifying 
defect types and the sources of error in a software develop- 
ment effort, 2) determining the effectiveness of the different 
defect detection techniques and strategies used by the or- 
ganization, and 3) using the feedback provided by analysis 
of the defects to help the organization reduce the number of 
defects it inserts into its systems. Like [IEEE93], ODC pro- 
vides a scheme for classifying defects, which is useful in 
identifying sources of error at different points in the devel- 
opment process. However, it does not seem to possible to 
use the classification scheme to consistently count faults at 
the module level. The recognition process for defects is not 
sufficiently well defined to permit the automatic recognition 
of these defects. 
In [Fran98], Frankl et al. develop a model for evaluating test 
methods by the delivered reliability of the system. The as- 
pect of that work relevant to this paper is the rejection of the 
traditional notion of faults in favor of the idea of failure re- 
gions (“a collection of failure inputs that some change fixes 
exactly”). Frankl et al. observe that faults have no unique 
characterization - a software component fails for some test- 
set, and is then changed so that it succeeds on that testset. A 
simple example illustrates the concept: suppose we have a 
program composed of two functions, A and B. Function A 
computes a real number, and then calls function B to com- 
pute the square root of that number. If the value computed 
by A is less than 0, the program will fail. There are two 
changes that can be made - either A can be changed so that 
it never passes a value less than 0 to B (e.g., call B only if 
the value is not negative), or B can be changed so that nega- 
tive input values will not cause it to fail (e.g., compute the 



square root of the input's absolute value). We agree that 
faults do not necessarily have a unique characterization. 
However, our experience with development efforts indi- 
cates that there is often one set of acceptable repair ac- 
tions that is noticeably less costly than the altematives, 
both in terms of the number of affected components and 
total amount of changes made. Based on our experience, 
we assume that in a production development environment, 
developers will seek the least costly altematives that they 
believe will effect the required repairs in order to main- 
tain the required delivery schedule. Under this assump- 
tion, we can consider the repair actions to be unique, 
which we can then use as the basis of a meaningful fault 
count. 

3. Recognizing Software Faults 
Perhaps one of the most important considerations in 

the measurement of software faults is the ability to scale 
the fault. Not all faults are equal. The software fault size 
description problem is very similar to that confronted by 
civil engineers in the construction of a building. When 
structural concrete is poured to form the columns of a 
building, some voids will naturally occur in the concrete. 
There are big voids and there are little voids. All voids 
may potentially weaken the structure. Two factors must 
be considered in the determination of the structural con- 
sequences of voids in the pour. First, there is the amount 
of stress in the vicinity of the void. Second, there is the 
volume of the void. A small void in a highly stressed 
location will make the building unacceptable weak. A 
large void in the surface of a column may simply create 
visual problems. 

Software faults, just like voids in concrete, also are 
large or small. The term, fault, has a size component just 
as does a structural void in the concrete pour. Sometimes 
a simple operator is at fault. The developer used a "+" 
instead of a "-". Sometimes two or three statements must 
be modified, added, or deleted to remedy a single fault. 
The subject of this paper is the identification and enu- 
meration of faults that occur in source code. We ought to 
be able to do this mechanically. That is, it should be pos- 
sible to develop a tool that could count the faults for us. 
Further, some program changes to fix faults are substan- 
tially larger than are others. We would like our fault 
count to reflect that fact. If we have accidentally mis- 
typed a relational operator like '<I instead of I>' , this is 
very different from having messed up an entire predicate 
clause from an if statement. The actual changes made to 
a code module are tracked for us in configuration control 
systems such as rcs or cvs [Cede931 as code deltas. We 
must learn to classify the code deltas that we make as to 
the origin of the fix. In other words, each change to each 
module should reflect a specific code fault fix, a design 
problem, or a specification problem. If we manifestly 
change any code module, significantly change it, and fail 

to record each fault as we repaired it, we will pay the price 
in losing the ability to resolve faults for measurement pur- 
poses. 

We will base our recognition and enumeration of soft- 
ware faults on the grammar of the language of the software 
system. Specifically, faults are to be found in statements, 
executable and non-executable. In the C programming lan- 
guage we will consider the structures shown in Figure 1 
below to be executable statements. 

<executable-statement> ::= <labeled-statement> I 
<expression> 1 
<selection-statement> I 
<iteration-statement> I 
<jump-statement> 

Figure 1 - Executable Statements in C 

In very simple terms, these structures will cause our execu- 
table statement count, Exec, to change. If any of the tokens 
change that comprise the statement then each of the change 
tokens will represent a contribution to a fault count. 

Non-executable statements are shown below in Figure 2: 

<declaration> ::= <declaration-specifiers> ; 
1 <declaration-specifiers> <init-declarator-list> I;' 

Figure 2 - Non-executable Statements in C 

We will find faults within these statements. The granularity 
of measurement for faults will be in terms of tokens that 
have changed. Thus if one had typed the following state- 
ment in C: 

a = b + c  * d; 
but had meant to type 

a = b + c I d; 
then there is but one incorrect token. In this example, there 
are eight tokens in each statement. There is one token that 
has changed. There is one fault. This circumstance is very 
different when wholesale changes are made to the statement. 
Suppose that this statement 

was changed to 

We are going to assume, for the moment, that the second 
statement is a correct implementation of the design and that 
the first was not. This is clearly a not coding error. (Gener- 
ally when changes of this magnitude occur they are design 
problems.) In this case there are 8 tokens in the first state- 
ment and 15 tokens in the second statement. This is a fairly 
substantial change in the code. Our fault recording method- 
ology should reflect the degree of the change. 

The important consideration with this fault measurement 
strategy is that there must be some indication as to the 
amount of code that has changed in resolving a problem in 
the code. We have regularly witnessed changes to tens or 

a = b + c  * d; 

a = b + (c * x) + sin(z); 



... 

even hundreds of lines of code recorded as a single "bug" 
or fault. The only measurable index of the degree of the 
change is the number of tokens that have changed to ame- 
liorate the original problem. To simplify and disambigu- 
ate further discussion, consider the following definitions. 

Definition: A fault is an invalid token or bag of tokens in 
the source code that will cause a failure when the com- 
piled code that implements the source code token is exe- 
cuted. 

Definition: A failure is the departure of a program from 
its specified fimctionalities. 

Definition: A defect is an apparent anomaly in the pro- 
gram source code. 

4. Counting Software Faults 
Each line of text in each version of the program can be 

seen as a bag of tokens. That is, there may be multiple 
tokens of the same kind on each line of the text. When a 
software developer changes a line of code in response to 
the detection of a fault, either through normal inspection, 
code review processes, or as a result of a failure event in a 
program module, the tokens on that line will change. 
New tokens may be added. Invalid tokens may be re- 
moved. The sequence of tokens may be changed. Enu- 
meration of faults under this defintion is simple, straight- 
forward. Most important of all, this process can be auto- 
mated. Measurement of faults can be performed very 
precisely, which will eliminate the errors of observation 
introduced by existing ad hoc fault reporting schemes. 

An example would be useful to show this fault meas- 
urement process. Consider the following line of C code. 

(1) a = b + c ;  
There are five tokens on this line of code. They are B, = 
{<a>, <=>, <b>, <+>, <c>} where B1 is the bag represent- 
ing this token sequence. Now let us suppose that the de- 
sign, in fact, required that the difference between b and c 
be computed 

There will again be five tokens in the new line of code. 
This will be the bag B2 = {<a>, <=>, <b>, <->, <c>}. 
The bag difference is B - B2 = { <+>, <-> } . The cardi- 
nality of B1 and B2 is the same. There are two tokens in 
the difference. Clearly, one token has changed from one 
version of the module to another. There is one fault. 

Now let us suppose that the new problem introduced 
by the code in statement (2) is that the order of the opera- 
tions is incorrect. It should read: 

(3) a = c -  b; 
The new bag for this new line of code will be B3 = {<a>, 
<=>, <c>, <->, S > } .  The bag difference between (2) 
and (3) is B2 - B3 = { }. The cardinality of B2 and B3 is 
the same. This is a clear indication that the tokens are the 

(2) a =  b -c;  

same but the sequence has been changed. There is one fault 
representing the incorrect sequencing of tokens in the source 
code. 

Now, to continue the example above, let us suppose that 
we are converging on the correct solution however our cal- 
culations are off by l .  The new line of code will look like 
this. 

(4) a =  1 + c - b ;  
This will yield a new bag B4 = {<a>, <=>, <I>, <+>, <c>, 
<->, <b>}. The bag difference between (3) and (4) is B3 - 
B4 = {<1>, <+>}. The cardinality of B3 is five and the car- 
dinality of B4 is seven. Clearly there are two new tokens. 
By definition, there are two new faults. 

It is possible that a change will span multiple lines of 
code. All of the tokens in all of the changed lines so 
spanned will be included in one bag. This will allow us to 
determine just how many tokens have changed in the one 
sequence. 

The source code control system should be used as a ve- 
hicle for managing and monitoring the changes to code that 
are attributable to faults and to design modifications and 
enhancements. Changes to the code modules should be dis- 
crete. That is, multiple faults should not be fxed by one 
version of the code module. Each version of the module 
represents should represent exactly one enhancement or one 
defect. 

5. Examples 
We will take a simple example and trace the evolution of 

a source code program through three successive revisions 
through the UNJX rcs program. The sample program is 
from Table 2 repeated here (with added line numbers for 
future reference). 

1 int Sum(int upper) 
2 I  
3 int sum = 0; 
4 int index = 0; 
5 
6 label: 
7 if(index c upper) 
8 I  
9 
10 
11 goto label; 
12 1 
13 return sum; 
14 1 

index++; 
sum = sum + index; 

Figure 3 - Sample Program 

Figure 3 above represents version 1.1 of the program. Suc- 
cessive updates to this will be 1.2, 1.3, etc. The rcs system 
will keep track of the version number, the date and time of 
the update, and the author of the rcs activity. An abridged 
version of the rcs module structure to record these data is 
shown in Table 1 below. 



: found a problem with a relational operator 

1.1 
Log 
@Initial revision 
@ 
Text 
@d7 1 
a7 1 

if(index c upper) 

5.02.01.22.17.38; author John Doe; 

Table 1 - Change History 

For rcs, the most recent version, in this case 1.4, is kept at 
the top of the list and the list is numbered chronologically 
backwards in time. Each version keeps a pointer to the 
next version in the table. 

The actual changes to the source code at each version 
are shown in Table 2 below. The rcs program will always 
keep the most recent version in the file. This is shown in 
the table entry beginning with, in this case, version 1.4. 
The second entry in the record for version 1.4 is an entry 
beginning with the word log and delimited by @'s. This 
is the log comment introduced by the developer. In our 
proposed model this log entry would begin with the word, 
fault, if the version increment were attributable to a fault 
fix or the word, change, if it were attributable to a change 
in design or requirements. The initial log entry, version 
1.1, is for neither a change nor a fault fix but is the title of 
the program. 

1.4 
Log 
@fault: fixed relational operator 

int sum = 0; 
int index = 0; 
label: 

if(index =. upper) 

index++; 
sum = sum + index; 
goto label; 

update (index); 
Return sum; 

{ 

1 

@ 
1.3 
Log 
@fault: inserted call to update function 
@ 
Text 

Table 2 - Sample Program Versions 

Following the log entry is the text entry. In the case of 
rcs, the topmost text entry is the most recent version of the 
program. Each of the subsequent table entries shows the 
changes that must be made to the most recent program to 
change it to a previous version. All changes are made, in 
rcs, by adding or deleting whole lines. Thus, to return to 
version 1.3 from version 1.4, the text part of record 1.3 tells 
us to go to line 7 (relative to 1) of the program and delete 
one line. That is what the line d7 1 tells us. The next text 
line says that we must add one line, a7 1, again at line 7. 
The text that must be added is on the following line. Thus, 
version 1.3 will have the appearance shown in Figure 4 be- 
low. 

Line number 7 has been changed on version 1.3. Let 
B2 = { <iB, <(>, <index>, <<=>, <upper>, <)>I. 

represent this bag of tokens. On version 1.4 the bag of to- 
kens is 

The bag difference is B2 - B1 = {<<=>, e>}. The cardi- 
nality of B2 is 6 and the cardinality of B1 is 6. The cardinal- 
ity of the bag difference is two. Therefore, one token has 
changed and we will record one fault. 

To return to version 1.2 from version 1.3 we see that we 
must delete line 13. All of the tokens on this line were place 
there in remediation of a fault. The bag representing this 
line of tokens is 

There are five tokens on this line. There was no former ver- 
sion of this line in version 1.2. Therefore all of the tokens 
on this line were put into the program to fix a defect in the 
program. We will then record 5 faults for this fur. 

Finally, to return to the initial version, 1.1, of the pro- 
gram we must delete line 7 and add a new line represented 
by the bag 

B1 = { <iB, <(>, <index>, e>, <upper>, <)>}. 

B3 = {<update>, <(>, <index>, <)>, <;> } . 

B4 = { <iD, <(>, <index>, (0, <upper>, <)>} . 



This is similar to the transition between versions 1.3 and 
1.4. Only one token has changed. We will record one 
fault for this module version. 

1 int Sum(int upper) 
2 {  
3 int sum = 0; 
4 int index = 0; 
5 
6 label: 
7 if(index e= upper) 

9 index++; 
10 
11 goto label; 

sum = sum + index; 
- 

12 I 
13 Update (index]; 
14 return sum; 
15 I 

Figure 4 - Sample Program, Version 1.3 

6. Current Application 
The fault definition given above is currently being 

applied to a JPL software development effort. The goal 
of this effort is to extend previous work in identifying 
relationships between measurements of the system's 
structural evolution and the number and type of faults 
inserted into the system during its development. 

Structural measurements are obtained in a straightfor- 
ward manner, as described in [NikoOl]. For the system 
being investigated, we are fortunate in having the problem 
reporting system integrated with the configuration 
management repository. For each failure reported 
through the system, a "change package" is automatically 
opened in the repository. Developers then check repairs 
into the change package, and commit the completed 
change package to the repository when the repairs have 
been completed. In this way, it is possible to identify the 
changes that were made in response to each failure that 
was reported. 

Using the fault definition presented above in conjunc- 
tion with the information about the repairs that were 
made, we are able to analyze the differences between the 
modules associated with a failure and the repaired ver- 
sions of those modules, and count the number of faults. 
The configuration management system we are using to 
track the system's history, cvs, can generate reports iden- 
tifying the version in which each line was inserted into the 
system. A fragment of this type of report is shown below 
in Figure 5. The leftmost numbers indicate the version in 
which each line was inserted. We use this capability to 
determine the version into which each fault was inserted. 
Since we have a complete history of the system's struc- 
tural evolution, we can determine for each module in the 
system the amount of change that occurred between each 
group of faults inserted into that module, and thereby de- 
termine an empirical distribution of the number of faults 
inserted per unit change. We are currently extracting the 

fault information from the more than 6000 affected mod- 
ules, and will be using this information over the next several 
months to: 

Determine empirical distributions relating the number of 
faults inserted to the amount of structural change relat- 
ing to the software. 

Identify relationships between different types of struc- 
tural change (as indicated by the domain scores measur- 
ing structural change) and the number of faults inserted. 

Identlfy relationships between the type of fault inserted 
and the type of structural change that was made. 

1.28 (iim 21-Mar-01): int watcher-parre-wrench-options (char * args) 
1.28 (iim 21-Mar-01): ( 
1.28 (iim 21-Mar-01): RListOfREuf * options: 
1.28 (iim 21-Mar-01): RListOfREufEnby * option-entry: P An entry in the list of options. */ 
1.31 (man 04-Mav-01): RListOfRBuf * option-Darts: P Option entry broken into name and value. ' I  

P The separated options. */ 

1.28 bim 21-Mar-61): ' RListOfREufEntry opion-name: P The Name of the current oplon 'I 
1.28 (iim 21-Mar-01): RListOfREJfEntry * option-Val: 
1.31 (man 04-May-01): 
1.28 (jim 21-Mar-01). ENode * command-line: 
1.31 (man 04-May-01): int wellLformed = TRUE; P Is this set of oDtions well-formed? ' I  
1.31 fman 04-Mav-01): 

P The Value (if applicable) of the 
*current option. 'I 

P Node containing command line oplins. .I 

1.28 i i m  21-Mar&):' 
1.35 fcorv 23Jan-02): options = rstrcmlit (ams. I:.. 0): 
1.28 iim-21-Mar-01); command-line-=~watch&-wnfi~get-command_line (): 
1.28 (iim 21-Mar-01): 
1.28 fiim 21-Mar-011: RLlST FOREACH IoDtions. ootion~ entrv) . .  . .  - _I  

1.28 i i m  ZI+ar-Olj: { - 
1.35 (wry 234an-02): 
1.28 (iim 21Mar-01): 
1.28 (jim 21-Mar-01): 

option-parts = rbuf-split (option-entryabuf. *=", 1): 
option-name = rlist-nlh (option-parts, 0); 
option-val = riist-nth (option-parts. 1): 

1.28 (iim 21-Mardl): 
1.31 (matt 04May-01): 
1.29 (jim 23-Mar-01): 
1.28 (iim 21-Mar-01): ( 
1.28 (iim 21-Mar-01): 
1.31 (man 04-May-01): * drivers are installed. */ 
1.29 (iim 23-Mar-01): 
1.28 (iim 21-Mar-01): 
1.28 uim 21-Mar-01): 
1.29 (iim 23-Mar-01): 
1.28 (iim 21-Mar-01): { 
1.28 (iim 21-Mar-01): 
1.31 (man 04-May-01): 
1.31 (man 04-May-01): 
1.28 (iim 21-Mar-01): 
1.28 (iim 21-Mardl): ( 
1.29 (iim 22-Mar-01): 
1.31 (man 04-May-01): 
1.28 (iim 21-Mar-01): break: 
1.28 (iim 21-Mar-01): ) 
1.29 (iim 23-Mar-01): 
1.28 (iim 21-Mar-01): ) 

if (rbutequal-str (option-name->buf. 'allow-nodrivers")) 

/'Wrench will want to be able to start watcher up before any 

enode-anrib-str (command-line, 'allow-nodrivers". 'true"); 
printf ("' Will allow starling without driverr..\n.); 

'else if (rbuf-equal-str (option-nama>buf. "only-transpal")) 

P Wrench wants to start watcher with only the specified transport 

if (NULL == option-Val) 

* (ie. most likely a unix socket or something, to send it mmmands 
* without trying to wnnect to any GUS) 'I 

printf ('only-transport requires a va1ue.W); 
well-formed = FALSE: 

emde-anrib (command-line. 'only-transpof. option-val->bu0: 

Figure 5 - CVS Annotation 

7. Discussion and Future Work 
We have proposed a definition of software faults that can 

be applied to source code. The definition allows faults to be 
unambiguously measured at the level of individual modules. 
Since faults are measured at the same level at which struc- 
tural measurement are taken, it becomes more feasible to 
construct meaningful models relating the number of faults 
inserted into a software module to the amount of structural 
change made to that module. Because of the way in which 
faults are defined, the task of counting faults is easily auto- 
mated, making it much more practical to analyze large soft- 
ware systems such as those developed to support NASA 
flight missions. In other words, the faults may be quantified 
by a software tool that can analyze the deltas in code mod- 



ules maintained by the configuration control system and 
measure those changes specifically attributable to failure 
reports. 

We are currently working with a task whose goal is the 
development of a comprehensive set of on-board control 
and ground support software components that can be 
adapted from mission to mission. We have in hand the 
complete structural history of the software that has been 
developed to date. For each of the more than 1000 re- 
ported failures, we know the set of modules that affect the 
repair, as well as the versions of those modules. 
It is clear that noise in the fault measurements may have a 
significant effect on our results, so it will be necessary to 
quantify it as accurately as possible. In the section “Cur- 
rent Application”, we have described the way in which 
the failure reporting and tracking system is integrated into 
the configuration management system. A significant 
source of noise could involve developers making en- 
hancements to the system at the same time they are re- 
sponding to a reported failure. In this case, the enhance- 
ments would be counted as repairs made in response to 
the failure. Part of our analysis must involve selecting an 
appropriate subset of the reported failures and interview- 
ing developers about the changes made in response to 
those failures. We must be careful to select representative 
failures from all system components to control for the 
noise inserted by each development team. We must also 
select reported failures from different times during the 
development effort, to determine whether the number of 
enhancements reported as fault repair changes over time. 
As mentioned above, the determination of when a fault 
was initially inserted into a component is based on the 
ability of the revision control system to identify the ver- 
sion in which each line first appeared in the module. For 
faults whose repair involves removing or modifying a 
line, determination of when the fault was introduced into 
the module is straightforward. However, if the repair 
activity involves adding a line, determining the version 
into which the fault was inserted is more complicated. 
We need to examine the context in which the repair is 
made to determine the first version of the module in 
which the absence of the line would have constituted a 
fault. As an approximation, we can determine when the 
lines bounding the repair first appeared in the module. 
For instance, suppose that repairing module A involves 
adding one line between lines 99 and 100 of version 11. 
The new line now becomes line 100, and line 100 be- 
comes line 101. After committing the change to the re- 
pository as version 12, we can use the revision control 
system’s reporting capabilities to identify the first version 
in which both lines 99 and 101 appear - we will take this 
version to be the one in which the fault originally oc- 
curred. 

Note that this approximation may not always accu- 
rately indicate the version in which a fault was intro- 

duced. Consider 2 modules, A and B. Module A computes 
a real number and passes it to module B, which determines 
the square root of that number and returns that value. Ver- 
sions 1-4 of module A are constrained to retum values 
greater than or equal to 0, and because of that constraint, 
module B does not test the input to determine whether it is 
less than 0. However, a change in the requirements removes 
module A’s constraint in later versions. Suppose that at the 
same time that version 5 of module A is created, version 2 
of module B is created in response to a request to change the 
formatting of its output, but that no provision is made to 
determine whether its input is less than 0. We later discover 
that module B does not respond as expected to inputs from 
module A, and we change module B to first test the input 
value before extracting the square root. In this situation, we 
see that the fault was inserted at the same time that version 2 
of module B was created, although the approximation de- 
scribed above would indicate that the initial version of mod- 
ule B contained the fault. Only a detailed examination of a 
selected subset of the failure reports with which we are 
working will be able to indicate the amount of uncertainty 
introduced by this approximation. 

Finally, we wish to expand the categorization of fault 
types in future work. The categorizations we have provided 
above are quite simple - addition or removal of tokens, as 
well as a limited capabilities to detect tokens that have 
changed value or execution order. We would like to im- 
prove our ability to detect these types of changes. 

The technique described above does not currently allow 
us to identify all situations in which a given token has been 
replaced by another, which may lead to undercounting the 
number of faults that have been corrected. Consider the 
following example, for which the original statement is: 

which is changed during repair to 

The six tokens representing (5) is B5 = {<a>, <=>, <b>, 
<+>, <c>}, and the eight tokens representing (6) is B6 = 
{<a>, <=>, <b>, <->, <e, <+>, <d>}. We see that what 
has happened is that <+> in (5 )  has been changed to <-> in 
(6), and that <c>, <+>, and <d> have been added in (6). 
However, the bag difference Bg - B5 = {<->, <d>}, indicat- 
ing the addition of two new tokens, but failing to indicate 
that one token was replaced by another. We are currently 
developing the techniques that will be necessary to deal with 
this issue. 

The technique also does not identify the number of to- 
kens that have been reordered. Consider again the situation 
illustrated by comparing (2)  and (3). We see that the order- 
ing of <b> and <c> has changed from (2) to (3), for which 
we could count 2 faults. However, our examination of the 
bag difference leads only to the conclusion that at least 1 
token has changed, for which we count 1 fault according to 
our definition. In this situation, our definition could again 
lead to undercounting the number of faults repaired. 

(5) a =  b + c ;  

(6) a = b - c + d ;  



We would also like to provide a more detailed categoriza- 
tion - for example, we could count the number of tokens 
for which the execution ordering was changed. Finally, 
we might wish to distinguish between those changes made 
in a condition controlling the execution of a block of 
statements, as opposed to changes made in other executa- 
ble statements. 
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