
Software Design Principles and Practices

Kirk Kandt
Jet Propulsion Laboratory

ronald. k. kandt@pl.nasa.gov

Abstract

Jet Propulsion Laboratory (JPL) has an on-going
process improvement program that is assessed against
I S 0 and CMMl criteria. To help JPL meet these criteria,
a Sofiare Quality Improvement project was recently
established to define sofiare requirements, guidelines,
and processes consistent with these tuo standards and
infuse this technology into the organization. In support of
this tays the author identifed hundreds of sofiare
development practices. This paper discuwes those
practices, and underlying principles, that address
common design problems. In addition, some brief ideas
are presented about the influence of good design
practices on the design of programming languages and
integrated development environment.s. Lastly, some hints
are provided for creating improved design methodologies.

1. Introduction

In 1999, JPL lost two spacecraft. As a result, NASA
investigated these losses and reported on the possible
causes of them. These reports and an on-going process
improvement effort caused JPL to reexamine its
management and engineering processes. For software,
JPL levied new requirements and guidelines on projects
and made it much more difficult to obtain waivers on
requirements. Some of these new requirements and
guidelines affected software development processes.

To help define these new software requirements and
guidelines, the author identified hundreds of best
practices. These practices span the entire software
lifecycle, cover both management and technical
processes, and have process- and product-orientation.
This paper reports on general design practices of use
across most types of software development activities.
Another paper will deal with those practices specific to
the development of flight software systems, which are
autonomous, mission-critical, and real-time.

The identification of these software design practices
was accomplished using several methods. First, the author
identified those practices that he could draw upon by
introspection. Many of these practices were not
necessarily original (e.g.. coupling and cohesion). Second,
he reviewed some of the published literature (e.g., [12],

[14]). Third, he interviewed approximately 30 senior
software personnel, of an estimated 1,100 software
practitioners at JPL, to learn what they had to say about
the subject. All of this information was synthesized and
condensed to about 60 software design practices, of which
42 are reported herein.

These practices can be used in many ways. First,
organizations can use these practices to train software
engineers and evaluate their software development
practices. Second, organizations can use them to define a
core set of software design practices. Third, the
identification of these practices can motivate others to
explore opportunities for automating their use,
enforcement, and verification. The remainder of this
paper will describe these practices, as well as their
underlying principles.

2. Principles

A software design principle is a comprehensive and
fkdamental doctrine or rule that governs the creation of
quality software designs. The producer-based meta-
principle is to maximize profit by reducing overall
development and maintenance costs and producing
artifacts having the features yielding the greatest number
of sales. The customer-based meta-principle is to satisfy
and delight the customer. To satisfy customers an
organization must design software that meets their needs.
To delight customers requires that an organization do
something unexpected and beneficial for them. For
example, integrated development environments that
generate exhaustive statement or path coverage test suites
for components most likely to have defects would delight
their users. Several software design principles that
elaborate these meta-principles follow. These principles
are not exhaustive, but provide the underlying motivation
for the software design practices that a later section
identifies.

Principle I: Design quality sofiware and measure the
quality of sofiare designs. Quality reflects the essential
character and inherent features and properties of artifacts,
as well as their degree of excellence. Thus, the quality of
a software design is a reflection of how well its features
and properttes support the users and developers needs.
Quality is often associated with the number of defects that
a sofiware artifact has. However, this is just one measure

1

mailto:kandt@pl.nasa.gov

of quality. Quality is also related to many other design
properties such as its reusability, understandability,
flexibility, reliability, efficiency, and so on. The better a
design, the more effective it will be to the developing
organization and its customers.

Principle I . I : Design reliable software system.
Customers should be able to rely on software to always
work and yield the same results when given the same
inputs. In many cases, human life is dependent on such
software. For example, many devices that monitor the
health and well being of people are dependent on
software. In other cases, the cost of lost or damage caused
by unreliable software is significant. For instance, the cost
of deep space missions is in the hundreds of millions of
dollars. An unreliable piece of code can cause a loss of an
entire mission [4].

Principle I . 2: Design flexible software systems.
Software systems should be capable of easily adapting to
new, different, or changing requirements. In an idealized
world, the problem that an organization is to solve and its
problem domain would be well understood, leading to
requirements that it or another organization completely
and unambiguously defines once, and only once, before
software design begins. Unfortunately, this fantasy rarely,
if ever occurs. In the real world, user needs change,
technology changes, personnel change, funding changes,
and so on. Consequently, to develop quality systems on
time and within budget that satisfies and delight
customers requires that software designers preplan their
designs for software product evolution. Such preplanning
requires the development of flexible designs.

Principle 1.3: Design understandable software
systems. Software engineers should be able to mentally
grasp the meaning, purpose, character, and reasonableness
of software systems. Thus, it is important to design
software systems so that they are understandable. There
are various ways of making software systems more
understandable, such as using improved design and
documentation methodologies.

Principle 1.4: Design simple sofware system. One of
the ways an organization produces software of high
quality is by minimizing the complexity of its designs.
Thus, software architects should only design and
programmers code those features that a system needs to
achieve the objectives of a project. Adding non-essential
features simply creates greater risk. Since the enormous
complexity associated with developing most modern
software systems quickly stresses intellectual limitations
of people, the best solutions are those created by people
who tailor their solutions accordingly [6]. Regardless of
the reason for overly complex designs and
implementations, the cost per line of code and defect rate
per line of code increase as software size increases [17].

Principle 2: Plan software development. Planning a
software development activity helps an organization

efficiently and effectively use its human and
technological resources.

Principle 2.1: Efficiently utilize sofware development
personnel. To efficiently use software development
personnel, an organization must assign personnel to tasks
that have the appropriate skills and experience, provide
software tools and a work environment that enhances their
productivity, and schedule personnel to maximize their
utilization. This requires planning.

Principle 2.2: Reduce or eliminate the number of new,
changed, and deleted requirements. To reduce
requirements creep and churn, an organization must
manage the definition of requirements, assign work tasks
based on the requirements and related requirement
groupings, evaluate the effects of the addition or change
of a requirement, and control the realization of such
requirements. The reduction of requirements churn and
creep helps to prevent or eliminate design changes, which
has a positive effect on both product quality and
development effectiveness.

Principle 3: Validate critical design Characteristics.
Critical aspects of a design can determine the success or
failure of a software system. Therefore, an organization
should validate vital design characteristics. These
characteristics may involve the performance of an overall
system or component, the suitability of a purchased
product or a reused component, the technical feasibility of
a fiamework, the usability of a user interface, etc.
Common methods of validating a design include
reviewing, simulating, and prototyping a design.

3. Practices

A software design practice is a customary action that a
software designer repeatedly performs to proficiently
derive quality software designs. Several software design
practices follow and are grouped into several categories.

3.1. Software Process Practices

Practice I : Define and use criteria and weightings for
evaluating software design decisions. Such criteria should
minimally include the following qualities: simplicity,
reliability, generality, efficiency, testability, modularity,
portability, and understandability. Using the relative merit
of these criteria, software managers can objectively
estimate the quality of the final product, as well as
intermediate artifacts and alternatives to them. One
effective method of defining criteria and their weightings
is Quality Function Deployment (QFD) [20]. Software
tools are available that implement the QFD methodology.

Practice 2: Create architectural specifications for
software systems. An architectural specification should
identify many things.

2

Security, reliability, availability, performance, safety,
and interoperability requirements.
All external interfaces, including descriptions of their
source, format, structure, content, and method of
support.
All intemal software interfaces, which should comply
with applicable public, open, and interoperability
standards.
Static views of structures that include threads of
collaboration.
Dynamic views of structures that show temporal,
concurrency, and synchronization behavior and include
interactions in time sequences and sequences of states.
Physical views of structures that describe the
allocation of software to hardware.
A reuse strategy that minimizes modifications and
additions to the reused software.
Standard components and component frameworks that
the architecture uses.

Adherence to this practice will result in improved design
realizations.

Practice 3: Create appropriately sized speciJications.
A specification provides a common point of reference for
a project team. Providing a very brief specification will
not enhance a shared understanding by the development
team because it will leave too many issues unspecified or
ill specified. An extremely detailed specification, on the
other hand, indicates that the project team has forgotten
that the application is the final product, not its
specification. An overly detailed specification also breeds
overconfidence, causing a team to poorly prepare for
required changes and other unexpected events. This
causes teams to ignore customer needs, resist changing
specifications, and schedule projects without considering
schedule slips. By creating right-sized specifications, an
Organization will bypass these problems and derive
greater benefit.

Practice 4: Identi3 fallback options during design
conceptualization. Since some decisions do not yield the
expected results, it makes since to consider and document
alternatives. This is especially true when accepting high
risks (e.g. using new technology). By having fallback
positions, a project can assume greater risk because it has
made contingency plans that permit quick recovery.

Practice 5: Create working protootypes of components
that implement key system features. Since the sole
purpose of a prototype is to validate a prior decision or
design, the software engineering team generally ignores
its defined software processes to reduce development time
of the prototype. Because of this, software engineers
rarely can cost effectively scale it into a workable
solution. Consequently, a project team must constantly
reinforce the purpose of a prototyping effort to its
customers, as well as the limitations of the resulting
prototype. In addition, an organization must follow an

effective quality assurance process that imposes various
quality standards to prevent an organization from
delivering prototypes to customers.

Practice 6: Use tools to design sofhvare that enforce
notation and semantic rules, especially ones that
automate vital functions. A key purpose of a design effort
is to communicate a design to others - developers, testers,
and customers - so that they will better understand how it
is suppose to hnction. By using software tools, an
organization can capture, syntactically check, and further
manipulate its designs. It can also enforce syntactic and
semantic rules that help to make the interpretation of a
specification very precise, which avoids confusion
regarding what a system is suppose to do among the entire
team and how its modules will communicate.

Practice 7: Use standard software components and
component frameworks. When software engineers reuse
components and component frameworks, they improve
their own productivity and enhance product reliability
because they analyze, design, and implement less
software. Another benefit of using components and
component frameworks is that they create a language for
discussing future needs and extensions of application
domains. From this perspective, reusable components and
component fixmeworks represent reusable design and
implementation pattems.

3.2. Design Heuristics

Practice 8: Defer decisions a s long as possible.
Software architects should postpone decisions as long as
possible because they will continuously increase their
understanding of the problem domain and the design
activity, which will enable them to make better decisions
and create better designs later on [22].

Practice 9: Produce m0deI.s of problem domain
concepts and interactions as a basis for sofmare system
architectures. A software system should manipulate
representations that model real-world objects, but
generally at a reduced level of fidelity. The benefits of
modeling a domain are several. First, software
engineering personnel can use a domain model to check
the specifications and requirements of a new system.
Second, software organizations can use the domain model
to educate people and provide them with a general
understanding of the structure and operation of developed
systems of the problem domain. Third, programmers can
derive working systems directly from a specification
described using the domain model. Fourth, domain
modeling makes it easier to inject faults into software
simulations, which eases debugging and test activities.

Practice 10: Reduce large systems into modules whose
size are about 5,000 lines of source code. For most
programmers, productivity rates drop off sharply when
programs grow much larger than about 5,000 source lines

.

3

of code. More specifically, for each ten-fold increase in
system size, programmer productivity decreases by
roughly forty percent [121. Thus, if software architects
successfully decompose an application that is 500,000
source lines of code into one hundred components of
5,000 source lines of code, assuming no additional cost
for partitioning, they will increase productivity of the
programming staff by about 5even hundred percent.
Additionally, software engineering teams would increase
their ability to adhere to schedules from about thirty-
seven to eighty-six percent [12]. Thus, developing right-
sized components, with well-defined interfaces is vital to
the success of an organization.

Practice 1 I : Assign responsibilities to software
components with the goal of minimizing coupling. More
specifically, artifacts should be dependent on or interact
with nine or less artifacts. By controlling the interactions
among system components and global resources, system
architects enhance their ability to reuse components and
create adaptable systems. In addition, the more loosely
coupled two routines or classes are, the less complex their
relationship. This permits software to be more
understandable.

Practice 12: Assign responsibilities to software
artgacts with the goal of maximizing cohesion.
Maximizing cohesion allows software architects to better
manage complexity and others to better understand
software systems. Artifacts having related responsibilities
will form larger-grained modules with well-defined
interfaces. In object-oriented programming languages,
such schemes cause designers to assign highly cohesive
sets of responsibilities to classes.

Practice 13: Create components that use well-dejined
intevfaces that encapsulate intemal behavior. Software
architects should define interfaces using a module
interconnection language or a similar mechanism [5].
Well-defined interfaces increase the ability of software
personnel to understand and maintain the basic function
of components and may be the most powerful design
heuristic for reducing a program’s complexity.
Furthermore, software architects should use the principal
of maximum information hiding to determine whether
they should use stepwise refinement OT layers of virtual
machines to define software architectures [21].

Practice 14: Use hierarchies and abstractions. Two of
the most effective general means of managing complexity
are the use of hierarchies and abstractions. A hierarchy is
a tiered, structured organization that divides a problem
space into ordered and ranked levels, where a system
handles different aspects of a problem at different levels.
Abstraction is a more general concept than hierarchical
organization because it can reduce complexity by
spreading details across a loose network of components.
The use of this practice increases programmer
productivity, as long as the depth of hierarchies is 5 or

less. Consider, for example, that the largest single
productivity gain made in software development resulted
when programmers switched fkom machine language to
higher-level languages [3]. In addition, hierarchies and
abstractions reduce the total number of details that
programmers must remember and make software systems
easier to understand and test, leading to greater reuse
achieved by separating common functionality.

Practice 15: Dejine and use common protocols for
common operations. Using common protocols makes it
easier for developers to understand and enhance a
software system. Several common object-oriented design
heuristics follow.
0 When one class contains or aggregates another, it

should create, initialize, and destroy the contained or
aggregated class.

0 When one class contains the data used to initialize
another class, it should create, initialize, and destroy
the initialized class.

0 When one class closely uses another one, it should
create, initialize, and destroy the used class.

0 A controller class should handle system events. The
class may represent an overall system, business, or
organization or an animate domain object that
performs the work.
Distribute the responsibility of a behavior that varies
by class - using polymorphic operations - to each
class. Such divide and conquer strategies reduce larger
problems into smaller, more manageable ones.
When member functions manipulate data, the data
should belong to the class.

The benefits of using these specific heuristics, and other
common protocols, is that they reduce complexity by
repeatedly using a core set of techniques for dealing with
common kinds of problems, making it easier for software
personnel to understand and develop systems.

Practice 16: Design software to support the
measurement of constrained resources, such as
throughput and memory. Since software should always
operate in a timely manner, it should monitor its resource
consumption to avoid exhausting a resource and not
fulfilling a system need. Currently, programmers must
write software to monitor resource consumption and
others must verify that such software functions correctly.

Practice 17: Use metria that measure design quality.
Several people have defined various metrics over the
years that measure hctional (e.g., [lo], [16]) and object
(e.g., [111) complexity. Numerous others have attempted
to determine those metrics that are superior to others and
how individual metrics correlate (e.g., [19]). These
metrics, as well as several others, provide a good basis for
distinguishing those components that have high quality
fkom those that do not. Since low quality components
have more defects and are harder to understand and adapt

4

to meet new demands than high quality ones, this practice
should be of particular interest to an organization.

3.3. Data Storage Practices

Practice 18: Categorize data that represent
measurements with specijic units of mearurement. It is not
sufficient to represent 5.3 inches as a floating-point
number. Instead, a non-primitive data type should
represent a measurement so that a compiler can discover
incompatible component interfaces during compilation
instead of during execution or test. This is a specific
analysis pattern [7], whose lack of use caused the Mars
Climate Orbiter Mission failure [4].

Practice 19: Specrfi a nominal value, precision,
accuracy, and an allowable range for data elements. This
ensures that applications do not violate interface
requirements. It also prevents invalid data that is out of
range or beyond the representational capability of the
hardware.

Practice 20: Design applications to initialize all
variables upon startup, including clocks, consistent with a
global state. When someone halts an application or it
aborts itself, other components of the system may
continue to run. Thus, when an operator restarts an
application, it must synchronize itself with a shared global
state, if it exists, and initialize local variables to
accurately reflect the global state. This practice helps to
produce reliable software since processes will share a
common, global state.

Practice 21: Avoid creating and using redundant data.
The problem with using redundant data is that a program
must consistently maintain it. Unfortunately, it is easy for
programmers to overlook this fact. However, the use of
redundant data is often necessary to meet the performance
requirements of a system. In these cases, progranimers
should use welldefined protocols (see Practice 15) for
maintaining the consistency among the redundant data.

3.4. Data Input and Output Practices

Practice 22: Design software systems to use all user
and sensor inputs. If a software system does not use all
sensor and user input, it is likely that there is an omission
in the requirements, design, or implementation. Therefore,
an organization should never allow exceptions to this
practice. If a system does not use an input, it should at
least log it in some way so that others can monitor when
an application is not using input data. Adherence to this
practice helps to produce correct software that processes
information in a complete and consistent manner.

Practice 23: Design software systems to check critical
inputs for correctness and proper timing. Software
architects must specify the minimum and maximum
bounds of each variable and the expected time between

inputs. When an application receives an out-of-range or
unexpected value or the time between arrivals is not as
expected then the application should, at a minimum,
record such defects. Adherence to this practice will
increase the reliability of software systems and provide a
basis for product improvement. It is possible to automate
part of this practice. Compilers for strongly typed
languages, for instance, fulfill some aspects of this
practice.

Practice 24: Ensure that the output absorption rate of
a component equals or exceeds that of its input arrival
rate for the longest interval for which input occurs. To
prevent long-term overload conditions, the output must be
consumed at a faster rate than input is received. Even so,
the ability to buffer both input and output should be
considered as a precaution for preventing data loss. By
ensuring that output absorption is at least as great as input
arrival, a development team will enhance system
reliability.

Practice 25: Specrfv contingency action7 to mitigate
when components exceed their output absorption rate
limits. For the short-term, a program can buffer inputs and
prevent sending excessive outputs. This, however, could
result in a buffer overrun. Consequently, the system must
perform contingency actions for this situation, as well as
when the long-term output capacity is less than the long-
term input capacity. If a system does not properly handle
this type of failure, a catastrophic error can occur.

Practice 26: Spec& software behaviors regarding
automatic update and deletion of information in data
queues. Establish and convey a policy regarding the
modification of data queue information, which will
enhance software predictability because programmers will
consistently handle anomalies.

Practice 27: Specrfi timeout conditions and recovery
actions for all input and output stream. By defining
timeout conditions and recovery actions, systems can
continue to hnction in the absence of input and output
data. Adhering to this practice improves software safety
and reliability. Encapsulating this practice as a software
component greatly eases the burden placed on
programmers since they would no longer need to create
event loops that monitor and recover fiom these
conditions.

3.5. Process Practices

Practice 28: Design applications to reject the actual
process state at initial startup and aj?er temporary
suspension. When a process is suspended, the real world
continues to change. Hence, the internal model of the
suspended process may be inconsistent with the real
world. Therefore, it must synchronize its internal model
with the extemal world when it is continued, or when it is
started. It is possible to encapsulate this practice as a class

5

within an object-oriented programming language, which
would help to improve software reliability.

Practice 29: Specifv the minimum and maximum time
that a process or thread should wait before thefirst input.
If a software system has not received input within a
reasonable amount of time after startup, it most likely has
not properly initialized itself and it should take corrective
action to repair itself or notify an operator of the problem
[14]. Similarly, this is also true if the time of receipt
occurs too soon after start up. Adherence to this practice
helps to produce reliable software.

Practice 30: Design sofmare to be free of deadlocks.
When a deadlock occurs, a system ceases to process data.
Software professionals can verify that programs are free
of deadlocks using formal and informal methods.
Alternatively, software engineers could design systems to
recover from such situations even though some data or
processing will be lost.

3.6. Failure Monitoring and Recovery Practices ,

Practice 31: Identi& and address expected faults as
early as practical. Anticipating the types of faults that can
occur within a software system permits its designers to
propose solutions to them, which helps to produce reliable
and safe software.

Practice 32: Design software systems to continuouvly
monitor their health and perJform corrective meavures,
when possible. Software systems should perform several
actions to support this practice.

Software systems should monitor assumptions during
runtime and respond appropriately to deviations from
them because violations of critical assumptions may
cause catastrophic errors. At a minimum, systems
should log each violation of an assumption. This
implies that system analysts and software architects
should identify the assumptions they make during
analysis and design tasks.
Software systems should respond to situations where
resource usage is oversubscribed (e.g., violations of
load assumptions). Common methods for dealing with
this kind of overload include logging the problem,
instructing external systems to reduce their load,
locking out interrupts for overloaded channels, and
reducing the functionality of the software system, or
even halting or suspending a process or a computer. In
addition, software can change operational behavior to
handle the load. For example, the system may use
faster algorithms to keep up with the workload, but
produce outputs with reduced accuracy.
Software systems should define the desired response to
an overload condition. Typically, the performance of a
software system will degrade, which implies that the
system may disable various capabilities. In these

situations, software systems should inform operators of
the degradation.

Adhering to this practice allows software systems to
continue to operate and catch up to the input data or
processing rates, when possible and appropriate.

Practice 33: Design software systems to quety their
environments. In some instances, system problems may
arise because of defects in external systems. Therefore,
some software systems may need to query external
components to determine if they have failed [14]. For
example, if a software system continues to timeout
bemuse it is has not received input from an extemal
system then it may make sense to shutdown the system or
change its operation until someone repairs the external
system. This practice may help to reduce the number of
falsely reported defects.

Practice 34: Use feedback loops to detect internal and
external failures. A feedback loop should execute a
diagnostic procedure that determines if a failure has
occurred, the source of the failure, and if corrective action
is required. Unused inputs from a feedback loop probably
indicate a deficiency in the design or implementation of
the software. Similarly, a missing feedback loop may
indicate an incomplete design or implementation. This
practice benefits software systems by making them more
reliable.

Practice 35: Specifv the minimum and maximum
expected execution times for a computation. If a
computation requires less time than expected then a
failure may have occurred preventing the system from
performing the desired computation. If a computation has
taken longer than expected then the system may be in a
deadlock situation or the system may be waiting for input
from a defective component, module, or external system.
In either case, something may have gone wrong and
adherence to this practice tends to improve system
reliability and safety.

A particularly important type of computation is an
atomic transaction. Since systems must revoke
transactions of this nature, revocation of partially
executed transactions may require that system analysts
specify the times and conditions when cancellation can
automatically occur, as well as the wamings that the
system may issue.

Practice 36: Specgy the conditions where sostware
systems can return to normal processing load afier
encountering an anomaly. Adherence to this practice
prevents a system from reentering an anomalous situation.
After detecting a capacity violation, for example, the
system should not begin normal processing too quickly
because the circumstances that caused the capacity
violation may still exist and cause the system to violate
the capacity limitation once again.

Practice 3 7: Design software to handle all credible
anomalies. This practice enables software to detect,

6

isolate, and correct single anomalies, which improves the
reliability of software.

Practice 38: Design sofhvare to handle successive,
interrelated anomalies critical to its well being.
Analyzing multiple anomalies and determining what to do
about them is a difficult task; therefore, it is prudent to
address only interrelated anomalies that can do significant
harm.

3.7. Finite State Machine Modeling Practices

Practice 39: Design system-wide control logic a v
table-driven akterministic finite state machines. Using
finite state machines as a basis for system design, all
components of a system, with the exception of the
controller that controls those components, are passive and
simply provide services to the active controller. Since the
controller is the only active component in a system,
software professionals can easily understand, validate,
and modify the system behavior. In addition, software
systems using a table-driven approach operate very
efficiently. Further, data stores can represent finite state
machines, which permits programmers to define multiple
instances of finite state machines and their associated
behaviors without actually changing code. In sum, this
approach provides a very flexible and reliable means for
controlling a software system.

Practice 40: Design finite state machine models of
sofiare systems to satisfy the following constraints: (I)
every state must have a defined transition for every
possible input and (2) every state muvt have a defined
transition to handle caves where a timeout occurs. This
scheme guarantees that the system will process all valid
and invalid data, as well as handling situations were the
system expects data, but the data does not arrive when
expected. The beneficial aspect of this practice is that it
ensures that all data is processed or that a failure is
recognized. A program could validate this practice if it
had access to machine-readable representations of finite
state machines.

Practice 41: When modeling a system wing finite state
machines, ensure that eve ry state is reachable from its
start state. An unreachable state indicates a flaw in the
requirements or design. Given machine-readable
representations of finite state machines, a program could
verify adherence to this practice.

Practice 42: Eliminate soft and hard failure modes for
all risk-reducing states, and akjine both soft and hard
failure modes for risk-increasing outputs. Whenever a
system is attempting to transition to a more functional
state, it should never permit a failure to occur that would
put its health in worse shape. Contrarily, when a system
enters a less capable state it should have both graceful and
hard fallback options [141.

4. Summary and Conclusions

As part of an ongoing software process improvement
activity, JPL has defined new requirements that software
development personnel must follow and guidelines that
they should follow. Hundreds of best practices were
identified to support the effort, of which 42 were reported
herein as general software design practices. These
practices can be. used to train software engineers, evaluate
and define software development practices, and as a
source of ideas for automating software design.

Unfortunately, few specification, modeling, or
programming languages or integrated development
environments are available to practicing software
engineers that provide or encourage the use of many of
these practices. Instead, current software engineering
practice still places most of the burden of good analysis,
design, and programming on the software professional,
although sofiware tools, such as compilers and integrated
development environments could handle more of it.

Conventional programming languages, for example,
suffer fiom several limitations. The software design
practices already discussed identifj, five of them. First,
conventional programming languages do not treat
numbers as importantly as they should. More specifically,
they do not allow programmers to specify the required
precision or accuracy of numbers, nor do they compute
the accuracy of numeric computations. Furthermore, they
do not generally permit the specification of the allowable
range of values that a numeric variable can assume.
Second, programming languages do not have built-in data
types corresponding to common types of measurements.
Third, programming languages do not provide
mechanisms for bounding the length of a computation or
raising errors when such bounds are violated. Fourth,
programming languages do not have built-in
representations for state machines. Fifth, modern
programming languages do not provide higher-level
abstractions as exemplified by QA4 [23] and SETL [24].

Practitioners need these capabilities in their
programming languages because they are overwhelmed
by the problems that they are asked to solve. For example,
the navigation software that JPL uses consists of 8 million
source lines of code, and it is growing. The complexity of
this one subsystem, of a much larger system is beyond
human comprehension and is not verifiable. To make
such a subsystem understandable requires an order of
magnitude reduction in specification complexity. It has
also been stated that such an order of magnitude
improvement is required in language design to have
people migrate fiom one language to another [13].
Although Java is an improvement over C and C++, it does
not provide an order of magnitude improvement in
personnel productivity or software quality. Instead, it has
succeeded by providing modest improvements compatible

7

with existing, widely used languages. Hence, it does not
help improve society’s need to build systems that are
more complicated in a time and cost effective manner.

Visual modeling languages, such as the Unified
Modeling Language (UML) [2], are great for enforcing a
common interpretation of a design. That is, UML defines
rules goveming the interpretation of diagrams. However,
graphical representations have several limitations. First,
deployment and class diagrams have marginal value. That
is, most editors and integrated development environments
provide utilities to rapidly define and acquire this same
information. Second, sequence diagrams are difficult to
specify repetitive operations. For example, try expressing
Q i ~ S 3 p (i) d o s , , s , , . . . s , w h e r e S is a set of

elements, p is a Boolean predicate, and S! is a language
statement. Third, UML modeling tools do not provide
capabilities to validate state diagrams, although they
could ensure that (1) every state has a transition for every
possible input, (2) time-dependent states have a state
transaction for handling timeout conditions, and (3) every
state is reachable.

Most integrated development environments also are
severely flawed. First, it is extremely rare to find an
environment that has the capability to measure design (or
code) quality, although several studies have shown the
benefits of metrics that measure coupling, cohesion,
encapsulation, class inheritance depth, and function fan-
out [13. Second, no integrated development environment
provides a capability to capture design options and
decisions or the rationale for choosing one option over
another, although there are numerous formal decision
making techniques that have been applied in other
industries and significant research has been conducted in
design rationalization (e.g., [8], [18]).

Markowitz created modem portfolio theory in the early
1950s [15] and similar ideas can be applied to software.
His contributions were two-fold. First, he determined how
one could compute an efficient &ontier of optimal
solutions measured by return on investment for any level
of risk. Second, he developed utility theory, which are
methods for selecting an acceptable level of risk. The
assets that he could invest in at the time were various
stocks and bonds; he defined risk as the possible deviation
of the expected rate of return of an investment.

Unfortunately, after thirty or so years of software
experiments this profession has little data that indicate the
relative merits between various software development
schemes that improve personnel productivity and product
quality. The field should be able to claim that one
technique, say, software inspections, is 1.57 times more
cost effective than software reviews and that the variance
between the two methods for discovering defects is 0.63.
If such information was available, practitioners could
optimally identify the level of effort they should expend

applying each technique given the level of risk they are
willing to accept. In sum, more work needs to address this
issue; folklore is no longer sufficient.

Several design practices that this paper identifies can
provide a foundation for an improved design
methodology. First, architects should decompose software
systems into smaller modules. Second, these smaller
modules, and their underlying components, should model
the problem domain. Such modeling helps to create
natural system boundaries, which reduces module
coupling and increases module cohesion. Third, architects
should define strict behavioral interfaces for every
module of the system. Fourth, architects should stop
designing a system when they reduce the size of each
module to the point where productivity is high, where
introduced defects are low, and where the rate of change
on each of these two dimensions begins to change rapidly.
Such a point is generally around 5,000 source lines of
code, or 100 function points [9]. In fact, function point
computation is an appropriate way to estimate software
size. This is because function point methodologies
attempt to compute software complexity in terms of data
and control complexity. Function point methodologies
also estimate the algorithmic complexity of various
problem domains (e.g., mathematical programming, real-
time computing) and attempt to normalize for such
problem domains. Fifth, architects should create
appropriately sized specifications. Such specifications
should include a description of the entire decomposition
of the system into its various components and the
interactions among the modules. In addition, these
specifications should provide detailed descriptions of the
interfaces of each module, including descriptions of the
formal parameters, return values, pre- and post-
conditions, and possible error conditions of each function
provided by each interface, and the underlying
assumptions of each interface.

Once the architects have designed the architecture,
they should conduct a realistic simulation based on
functional test cases by defining stubs for each module
that respond appropriately to each input. Thus, after the
successful execution of the simulation for every
functional test, the architects would have validated the
entire architecture. Afterwards, an organization could
implement individual modules in parallel using as many
people as there are modules, if needed. As long as each
component adhered to its specification, the system would
work as validated at the architectural level. If a
component did not satisfy its specification, its small size
would permit an organization to rapidly correct or replace
it and later validate it. Most importantly, using this
methodology a development team could validate a system
design before it completely implements the design, which
is contrary to current practice.

8

In conclusion, this paper has identified several design
practices that help software engineers more effectively
develop better products. It has also identified several
weaknesses in the way the profession develops software
and proposes some alternative solutions. The value of
these alternatives has not yet been determined.

5. Acknowledgements

The author would like to thank Bill Pardee for his
constructive criticism of an early draft of the design
principles, which helped to improve the content of this
paper. Similarly, Bruce Bullock made several useful
comments on an earlier draft of this paper.

6. References

[l] Boris Beizer, sofiware Testing Techniques, International
Thomson Computer Press, 1990.
[2] Grady Booch, James Rumbaugh, and Ivar Jacobson, Unified
Modeling Language User Guide, Addison-Wesley, 1998.
[3] Frederick Brooks, “No silver bullet: essence and accidents of
software engineering,” Computer, vol. 20, no. 4, pg. 10-19,
April 1987.
[4] John Cas5 et al., R p r t on the L0.s.s of the Mar.v Climate
Orbiter Mission, Jet Propulsion Laboratory, Internal Document
D 1844 1, November 1999.
[SI Lee Cooprider, The Repreventation of Families of Sofmre
S’.vtems, PhD Dissertation, Carnegie-Mellon University,
Computer Science D e p a ” t , 1979.
[6] E. Dijkstra, “The Humble Programmer,” Commnicatiom of
the ACM, vol. 15, no. 10, pg. 859-866, October 1972.
[7] Martin Fowler, Analy.si.s Patterns: Reusable Object Model.7,
Addison-Wesley, 1997.
[8] P. Freeman and A. Newell, “A Model for Functional
Reasoning in Design,“ Proceedings of the Second
Intemational Joint Conference on Art$cial Intelligence,
London, England, 197 1.
(91 David Gannw and David Herron, Function Point
Analysis: Measurement Pvactices for Successful Sofmme
Projects, Addison-Wesley, 2000.
[lo] M. H. Halstead, Elements of Software Science, Elsevier

[1 11 Brian Henderson-Sellers, Object-Oriented Metrics:
Measures of Gmplexig, Prentice Hall, 1995.
[121 Capers Jones, Sofiware As.ses.sments, Benchmarh, and Best
Practices, Addison Wesley, 2000.
[13] Donald E. Knuth, “Structured Programming with go to
Statements,” ACM Computing Surveys, vol. 6, no. 4, pg. 261-
301, 1974.
[14] Nancy G. Leveson, Safeware: System SgeV and
Computers, Addison Wesley, 1995.
[15] Harry M. Markowitz, Portfolio Selection: EfFcient
Diversifkation of Investments, Blackwell Publishers, 2”’ ed.,
1991.
[16] Thomas J . McCabe, “A Complexity Measure”, IEEE
Transactions on Sofmare Engineering, vol. SE-2, no. 4, pg.

North-Holhd, New YO&, 1977.

308-320, 1976.

[I71 Steve McConnell, “Less is More,“ Sofiware Development,
October 1997.
[18] Thomas P. Moran and John M. Carroll, Design Rationale:
Concepts, Techniques, and Use, Lawrence Erlbaum, 1996.
[19] A. Nikora and J. Munson, “Determining Fault Insertion
Rates for Evolving Sofiware Systems“, Proceedings of the Ninth
International ,SLmpmium on Sofiware Reliability Engineering,
Paderbom, Germany, November 4-7, 1998.
[20] William J. Pardee, To Sati.~& and Delight Your Customer:
How to Mmage for Customer Value, Dorset House, 1996.
[21] David Parnas, ”On the Criteria to be Used in Decomposing
Systems into Modules,“ Communications of the ACM, vol. 15,
no. 12, pp. 1053-1058, December 1971.
[22] Mark C. Paulk et al, The Cqabilig MaturiV Model:
Guidelines for Improving the Sofmre Procevs, Addison-
Wesley, 1994.
[23] J. F. Rulifson, J. A Derksen, and R J. Waldinger, QA4: A
Procedural Calculus for Intuitive Reavoning, Technical Report
73, AI Center, SRI International, November 1972.
[24] J. T. Schwartq R. B. K. Dewar, E. Dubinsky, and E.
Schonberg, Programming with Sets: An Introduction to S E n ,
Springer-Verlag, 1986.

9

