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Abstract 

Jet Propulsion Laboratory (JPL) has an on-going 
process improvement program that is assessed against 
I S 0  and CMMl criteria. To help JPL meet these criteria, 
a Sofiare Quality Improvement project was recently 
established to define sofiare requirements, guidelines, 
and processes consistent with these tuo standards and 
infuse this technology into the organization. In support of 
this tays the author identifed hundreds of sofiare 
development practices. This paper discuwes those 
practices, and underlying principles, that address 
common design problems. In addition, some brief ideas 
are presented about the influence of good design 
practices on the design of programming languages and 
integrated development environment.s. Lastly, some hints 
are provided for creating improved design methodologies. 

1. Introduction 

In 1999, JPL lost two spacecraft. As a result, NASA 
investigated these losses and reported on the possible 
causes of them. These reports and an on-going process 
improvement effort caused JPL to reexamine its 
management and engineering processes. For software, 
JPL levied new requirements and guidelines on projects 
and made it much more difficult to obtain waivers on 
requirements. Some of these new requirements and 
guidelines affected software development processes. 

To help define these new software requirements and 
guidelines, the author identified hundreds of best 
practices. These practices span the entire software 
lifecycle, cover both management and technical 
processes, and have process- and product-orientation. 
This paper reports on general design practices of use 
across most types of software development activities. 
Another paper will deal with those practices specific to 
the development of flight software systems, which are 
autonomous, mission-critical, and real-time. 

The identification of these software design practices 
was accomplished using several methods. First, the author 
identified those practices that he could draw upon by 
introspection. Many of these practices were not 
necessarily original (e.g.. coupling and cohesion). Second, 
he reviewed some of the published literature (e.g., [12], 

[14]). Third, he interviewed approximately 30 senior 
software personnel, of an estimated 1,100 software 
practitioners at JPL, to learn what they had to say about 
the subject. All of this information was synthesized and 
condensed to about 60 software design practices, of which 
42 are reported herein. 

These practices can be used in many ways. First, 
organizations can use these practices to train software 
engineers and evaluate their software development 
practices. Second, organizations can use them to define a 
core set of software design practices. Third, the 
identification of these practices can motivate others to 
explore opportunities for automating their use, 
enforcement, and verification. The remainder of this 
paper will describe these practices, as well as their 
underlying principles. 

2. Principles 

A software design principle is a comprehensive and 
fkdamental doctrine or rule that governs the creation of 
quality software designs. The producer-based meta- 
principle is to maximize profit by reducing overall 
development and maintenance costs and producing 
artifacts having the features yielding the greatest number 
of sales. The customer-based meta-principle is to satisfy 
and delight the customer. To satisfy customers an 
organization must design software that meets their needs. 
To delight customers requires that an organization do 
something unexpected and beneficial for them. For 
example, integrated development environments that 
generate exhaustive statement or path coverage test suites 
for components most likely to have defects would delight 
their users. Several software design principles that 
elaborate these meta-principles follow. These principles 
are not exhaustive, but provide the underlying motivation 
for the software design practices that a later section 
identifies. 

Principle I: Design quality sofiware and measure the 
quality of sofiare designs. Quality reflects the essential 
character and inherent features and properties of artifacts, 
as well as their degree of excellence. Thus, the quality of 
a software design is a reflection of how well its features 
and properttes support the users and developers needs. 
Quality is often associated with the number of defects that 
a sofiware artifact has. However, this is just one measure 
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of quality. Quality is also related to many other design 
properties such as its reusability, understandability, 
flexibility, reliability, efficiency, and so on. The better a 
design, the more effective it will be to the developing 
organization and its customers. 

Principle I .  I :  Design reliable software system. 
Customers should be able to rely on software to always 
work and yield the same results when given the same 
inputs. In many cases, human life is dependent on such 
software. For example, many devices that monitor the 
health and well being of people are dependent on 
software. In other cases, the cost of lost or damage caused 
by unreliable software is significant. For instance, the cost 
of deep space missions is in the hundreds of millions of 
dollars. An unreliable piece of code can cause a loss of an 
entire mission [4]. 

Principle I .  2: Design flexible software systems. 
Software systems should be capable of easily adapting to 
new, different, or changing requirements. In an idealized 
world, the problem that an organization is to solve and its 
problem domain would be well understood, leading to 
requirements that it or another organization completely 
and unambiguously defines once, and only once, before 
software design begins. Unfortunately, this fantasy rarely, 
if ever occurs. In the real world, user needs change, 
technology changes, personnel change, funding changes, 
and so on. Consequently, to develop quality systems on 
time and within budget that satisfies and delight 
customers requires that software designers preplan their 
designs for software product evolution. Such preplanning 
requires the development of flexible designs. 

Principle 1.3: Design understandable software 
systems. Software engineers should be able to mentally 
grasp the meaning, purpose, character, and reasonableness 
of software systems. Thus, it is important to design 
software systems so that they are understandable. There 
are various ways of making software systems more 
understandable, such as using improved design and 
documentation methodologies. 

Principle 1.4: Design simple sofware system. One of 
the ways an organization produces software of high 
quality is by minimizing the complexity of its designs. 
Thus, software architects should only design and 
programmers code those features that a system needs to 
achieve the objectives of a project. Adding non-essential 
features simply creates greater risk. Since the enormous 
complexity associated with developing most modern 
software systems quickly stresses intellectual limitations 
of people, the best solutions are those created by people 
who tailor their solutions accordingly [6]. Regardless of 
the reason for overly complex designs and 
implementations, the cost per line of code and defect rate 
per line of code increase as software size increases [17]. 

Principle 2: Plan software development. Planning a 
software development activity helps an organization 

efficiently and effectively use its human and 
technological resources. 

Principle 2.1: Efficiently utilize sofware development 
personnel. To efficiently use software development 
personnel, an organization must assign personnel to tasks 
that have the appropriate skills and experience, provide 
software tools and a work environment that enhances their 
productivity, and schedule personnel to maximize their 
utilization. This requires planning. 

Principle 2.2: Reduce or eliminate the number of new, 
changed, and deleted requirements. To reduce 
requirements creep and churn, an organization must 
manage the definition of requirements, assign work tasks 
based on the requirements and related requirement 
groupings, evaluate the effects of the addition or change 
of a requirement, and control the realization of such 
requirements. The reduction of requirements churn and 
creep helps to prevent or eliminate design changes, which 
has a positive effect on both product quality and 
development effectiveness. 

Principle 3: Validate critical design Characteristics. 
Critical aspects of a design can determine the success or 
failure of a software system. Therefore, an organization 
should validate vital design characteristics. These 
characteristics may involve the performance of an overall 
system or component, the suitability of a purchased 
product or a reused component, the technical feasibility of 
a fiamework, the usability of a user interface, etc. 
Common methods of validating a design include 
reviewing, simulating, and prototyping a design. 

3. Practices 

A software design practice is a customary action that a 
software designer repeatedly performs to proficiently 
derive quality software designs. Several software design 
practices follow and are grouped into several categories. 

3.1. Software Process Practices 

Practice I :  Define and use criteria and weightings for 
evaluating software design decisions. Such criteria should 
minimally include the following qualities: simplicity, 
reliability, generality, efficiency, testability, modularity, 
portability, and understandability. Using the relative merit 
of these criteria, software managers can objectively 
estimate the quality of the final product, as well as 
intermediate artifacts and alternatives to them. One 
effective method of defining criteria and their weightings 
is Quality Function Deployment (QFD) [20]. Software 
tools are available that implement the QFD methodology. 

Practice 2: Create architectural specifications for 
software systems. An architectural specification should 
identify many things. 
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Security, reliability, availability, performance, safety, 
and interoperability requirements. 
All external interfaces, including descriptions of their 
source, format, structure, content, and method of 
support. 
All intemal software interfaces, which should comply 
with applicable public, open, and interoperability 
standards. 
Static views of structures that include threads of 
collaboration. 
Dynamic views of structures that show temporal, 
concurrency, and synchronization behavior and include 
interactions in time sequences and sequences of states. 
Physical views of structures that describe the 
allocation of software to hardware. 
A reuse strategy that minimizes modifications and 
additions to the reused software. 
Standard components and component frameworks that 
the architecture uses. 

Adherence to this practice will result in improved design 
realizations. 

Practice 3: Create appropriately sized speciJications. 
A specification provides a common point of reference for 
a project team. Providing a very brief specification will 
not enhance a shared understanding by the development 
team because it will leave too many issues unspecified or 
ill specified. An extremely detailed specification, on the 
other hand, indicates that the project team has forgotten 
that the application is the final product, not its 
specification. An overly detailed specification also breeds 
overconfidence, causing a team to poorly prepare for 
required changes and other unexpected events. This 
causes teams to ignore customer needs, resist changing 
specifications, and schedule projects without considering 
schedule slips. By creating right-sized specifications, an 
Organization will bypass these problems and derive 
greater benefit. 

Practice 4: Identi3 fallback options during design 
conceptualization. Since some decisions do not yield the 
expected results, it makes since to consider and document 
alternatives. This is especially true when accepting high 
risks (e.g. using new technology). By having fallback 
positions, a project can assume greater risk because it has 
made contingency plans that permit quick recovery. 

Practice 5: Create working protootypes of components 
that implement key system features. Since the sole 
purpose of a prototype is to validate a prior decision or 
design, the software engineering team generally ignores 
its defined software processes to reduce development time 
of the prototype. Because of this, software engineers 
rarely can cost effectively scale it into a workable 
solution. Consequently, a project team must constantly 
reinforce the purpose of a prototyping effort to its 
customers, as well as the limitations of the resulting 
prototype. In addition, an organization must follow an 

effective quality assurance process that imposes various 
quality standards to prevent an organization from 
delivering prototypes to customers. 

Practice 6: Use tools to design sofhvare that enforce 
notation and semantic rules, especially ones that 
automate vital functions. A key purpose of a design effort 
is to communicate a design to others - developers, testers, 
and customers - so that they will better understand how it 
is suppose to hnction. By using software tools, an 
organization can capture, syntactically check, and further 
manipulate its designs. It can also enforce syntactic and 
semantic rules that help to make the interpretation of a 
specification very precise, which avoids confusion 
regarding what a system is suppose to do among the entire 
team and how its modules will communicate. 

Practice 7: Use standard software components and 
component frameworks. When software engineers reuse 
components and component frameworks, they improve 
their own productivity and enhance product reliability 
because they analyze, design, and implement less 
software. Another benefit of using components and 
component frameworks is that they create a language for 
discussing future needs and extensions of application 
domains. From this perspective, reusable components and 
component fixmeworks represent reusable design and 
implementation pattems. 

3.2. Design Heuristics 

Practice 8: Defer decisions a s  long as possible. 
Software architects should postpone decisions as long as 
possible because they will continuously increase their 
understanding of the problem domain and the design 
activity, which will enable them to make better decisions 
and create better designs later on [22]. 

Practice 9: Produce m0deI.s of problem domain 
concepts and interactions as a basis for sofmare system 
architectures. A software system should manipulate 
representations that model real-world objects, but 
generally at a reduced level of fidelity. The benefits of 
modeling a domain are several. First, software 
engineering personnel can use a domain model to check 
the specifications and requirements of a new system. 
Second, software organizations can use the domain model 
to educate people and provide them with a general 
understanding of the structure and operation of developed 
systems of the problem domain. Third, programmers can 
derive working systems directly from a specification 
described using the domain model. Fourth, domain 
modeling makes it easier to inject faults into software 
simulations, which eases debugging and test activities. 

Practice 10: Reduce large systems into modules whose 
size are about 5,000 lines of source code. For most 
programmers, productivity rates drop off sharply when 
programs grow much larger than about 5,000 source lines 

. 

3 



of code. More specifically, for each ten-fold increase in 
system size, programmer productivity decreases by 
roughly forty percent [ 121. Thus, if software architects 
successfully decompose an application that is 500,000 
source lines of code into one hundred components of 
5,000 source lines of code, assuming no additional cost 
for partitioning, they will increase productivity of the 
programming staff by about 5even hundred percent. 
Additionally, software engineering teams would increase 
their ability to adhere to schedules from about thirty- 
seven to eighty-six percent [12]. Thus, developing right- 
sized components, with well-defined interfaces is vital to 
the success of an organization. 

Practice 1 I :  Assign responsibilities to software 
components with the goal of minimizing coupling. More 
specifically, artifacts should be dependent on or interact 
with nine or less artifacts. By controlling the interactions 
among system components and global resources, system 
architects enhance their ability to reuse components and 
create adaptable systems. In addition, the more loosely 
coupled two routines or classes are, the less complex their 
relationship. This permits software to be more 
understandable. 

Practice 12: Assign responsibilities to software 
artgacts with the goal of maximizing cohesion. 
Maximizing cohesion allows software architects to better 
manage complexity and others to better understand 
software systems. Artifacts having related responsibilities 
will form larger-grained modules with well-defined 
interfaces. In object-oriented programming languages, 
such schemes cause designers to assign highly cohesive 
sets of responsibilities to classes. 

Practice 13: Create components that use well-dejined 
intevfaces that encapsulate intemal behavior. Software 
architects should define interfaces using a module 
interconnection language or a similar mechanism [5]. 
Well-defined interfaces increase the ability of software 
personnel to understand and maintain the basic function 
of components and may be the most powerful design 
heuristic for reducing a program’s complexity. 
Furthermore, software architects should use the principal 
of maximum information hiding to determine whether 
they should use stepwise refinement OT layers of virtual 
machines to define software architectures [21]. 

Practice 14: Use hierarchies and abstractions. Two of 
the most effective general means of managing complexity 
are the use of hierarchies and abstractions. A hierarchy is 
a tiered, structured organization that divides a problem 
space into ordered and ranked levels, where a system 
handles different aspects of a problem at different levels. 
Abstraction is a more general concept than hierarchical 
organization because it can reduce complexity by 
spreading details across a loose network of components. 
The use of this practice increases programmer 
productivity, as long as the depth of hierarchies is 5 or 

less. Consider, for example, that the largest single 
productivity gain made in software development resulted 
when programmers switched fkom machine language to 
higher-level languages [3]. In addition, hierarchies and 
abstractions reduce the total number of details that 
programmers must remember and make software systems 
easier to understand and test, leading to greater reuse 
achieved by separating common functionality. 

Practice 15: Dejine and use common protocols for 
common operations. Using common protocols makes it 
easier for developers to understand and enhance a 
software system. Several common object-oriented design 
heuristics follow. 
0 When one class contains or aggregates another, it 

should create, initialize, and destroy the contained or 
aggregated class. 

0 When one class contains the data used to initialize 
another class, it should create, initialize, and destroy 
the initialized class. 

0 When one class closely uses another one, it should 
create, initialize, and destroy the used class. 

0 A controller class should handle system events. The 
class may represent an overall system, business, or 
organization or an animate domain object that 
performs the work. 
Distribute the responsibility of a behavior that varies 
by class - using polymorphic operations - to each 
class. Such divide and conquer strategies reduce larger 
problems into smaller, more manageable ones. 
When member functions manipulate data, the data 
should belong to the class. 

The benefits of using these specific heuristics, and other 
common protocols, is that they reduce complexity by 
repeatedly using a core set of techniques for dealing with 
common kinds of problems, making it easier for software 
personnel to understand and develop systems. 

Practice 16: Design software to support the 
measurement of constrained resources, such as 
throughput and memory. Since software should always 
operate in a timely manner, it should monitor its resource 
consumption to avoid exhausting a resource and not 
fulfilling a system need. Currently, programmers must 
write software to monitor resource consumption and 
others must verify that such software functions correctly. 

Practice 17: Use metria that measure design quality. 
Several people have defined various metrics over the 
years that measure hctional (e.g., [lo], [16]) and object 
(e.g., [ 111) complexity. Numerous others have attempted 
to determine those metrics that are superior to others and 
how individual metrics correlate (e.g., [19]). These 
metrics, as well as several others, provide a good basis for 
distinguishing those components that have high quality 
fkom those that do not. Since low quality components 
have more defects and are harder to understand and adapt 
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to meet new demands than high quality ones, this practice 
should be of particular interest to an organization. 

3.3. Data Storage Practices 

Practice 18: Categorize data that represent 
measurements with specijic units of mearurement. It is not 
sufficient to represent 5.3 inches as a floating-point 
number. Instead, a non-primitive data type should 
represent a measurement so that a compiler can discover 
incompatible component interfaces during compilation 
instead of during execution or test. This is a specific 
analysis pattern [7], whose lack of use caused the Mars 
Climate Orbiter Mission failure [4]. 

Practice 19: Specrfi a nominal value, precision, 
accuracy, and an allowable range for data elements. This 
ensures that applications do not violate interface 
requirements. It also prevents invalid data that is out of 
range or beyond the representational capability of the 
hardware. 

Practice 20: Design applications to initialize all 
variables upon startup, including clocks, consistent with a 
global state. When someone halts an application or it 
aborts itself, other components of the system may 
continue to run. Thus, when an operator restarts an 
application, it must synchronize itself with a shared global 
state, if it exists, and initialize local variables to 
accurately reflect the global state. This practice helps to 
produce reliable software since processes will share a 
common, global state. 

Practice 21: Avoid creating and using redundant data. 
The problem with using redundant data is that a program 
must consistently maintain it. Unfortunately, it is easy for 
programmers to overlook this fact. However, the use of 
redundant data is often necessary to meet the performance 
requirements of a system. In these cases, progranimers 
should use welldefined protocols (see Practice 15) for 
maintaining the consistency among the redundant data. 

3.4. Data Input and Output Practices 

Practice 22: Design software systems to use all user 
and sensor inputs. If a software system does not use all 
sensor and user input, it is likely that there is an omission 
in the requirements, design, or implementation. Therefore, 
an organization should never allow exceptions to this 
practice. If a system does not use an input, it should at 
least log it in some way so that others can monitor when 
an application is not using input data. Adherence to this 
practice helps to produce correct software that processes 
information in a complete and consistent manner. 

Practice 23: Design software systems to check critical 
inputs for correctness and proper timing. Software 
architects must specify the minimum and maximum 
bounds of each variable and the expected time between 

inputs. When an application receives an out-of-range or 
unexpected value or the time between arrivals is not as 
expected then the application should, at a minimum, 
record such defects. Adherence to this practice will 
increase the reliability of software systems and provide a 
basis for product improvement. It is possible to automate 
part of this practice. Compilers for strongly typed 
languages, for instance, fulfill some aspects of this 
practice. 

Practice 24: Ensure that the output absorption rate of 
a component equals or exceeds that of its input arrival 
rate for the longest interval for which input occurs. To 
prevent long-term overload conditions, the output must be 
consumed at a faster rate than input is received. Even so, 
the ability to buffer both input and output should be 
considered as a precaution for preventing data loss. By 
ensuring that output absorption is at least as great as input 
arrival, a development team will enhance system 
reliability. 

Practice 25: Specrfv contingency action7 to mitigate 
when components exceed their output absorption rate 
limits. For the short-term, a program can buffer inputs and 
prevent sending excessive outputs. This, however, could 
result in a buffer overrun. Consequently, the system must 
perform contingency actions for this situation, as well as 
when the long-term output capacity is less than the long- 
term input capacity. If a system does not properly handle 
this type of failure, a catastrophic error can occur. 

Practice 26: Spec& software behaviors regarding 
automatic update and deletion of information in data 
queues. Establish and convey a policy regarding the 
modification of data queue information, which will 
enhance software predictability because programmers will 
consistently handle anomalies. 

Practice 27: Specrfi timeout conditions and recovery 
actions for all input and output stream. By defining 
timeout conditions and recovery actions, systems can 
continue to hnction in the absence of input and output 
data. Adhering to this practice improves software safety 
and reliability. Encapsulating this practice as a software 
component greatly eases the burden placed on 
programmers since they would no longer need to create 
event loops that monitor and recover fiom these 
conditions. 

3.5. Process Practices 

Practice 28: Design applications to reject the actual 
process state at initial startup and aj?er temporary 
suspension. When a process is suspended, the real world 
continues to change. Hence, the internal model of the 
suspended process may be inconsistent with the real 
world. Therefore, it must synchronize its internal model 
with the extemal world when it is continued, or when it is 
started. It is possible to encapsulate this practice as a class 
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within an object-oriented programming language, which 
would help to improve software reliability. 

Practice 29: Specifv the minimum and maximum time 
that a process or thread should wait before thefirst input. 
If a software system has not received input within a 
reasonable amount of time after startup, it most likely has 
not properly initialized itself and it should take corrective 
action to repair itself or notify an operator of the problem 
[14]. Similarly, this is also true if the time of receipt 
occurs too soon after start up. Adherence to this practice 
helps to produce reliable software. 

Practice 30: Design sofmare to be free of deadlocks. 
When a deadlock occurs, a system ceases to process data. 
Software professionals can verify that programs are free 
of deadlocks using formal and informal methods. 
Alternatively, software engineers could design systems to 
recover from such situations even though some data or 
processing will be lost. 

3.6. Failure Monitoring and Recovery Practices , 

Practice 31: Identi& and address expected faults as 
early as practical. Anticipating the types of faults that can 
occur within a software system permits its designers to 
propose solutions to them, which helps to produce reliable 
and safe software. 

Practice 32: Design software systems to continuouvly 
monitor their health and perJform corrective meavures, 
when possible. Software systems should perform several 
actions to support this practice. 

Software systems should monitor assumptions during 
runtime and respond appropriately to deviations from 
them because violations of critical assumptions may 
cause catastrophic errors. At a minimum, systems 
should log each violation of an assumption. This 
implies that system analysts and software architects 
should identify the assumptions they make during 
analysis and design tasks. 
Software systems should respond to situations where 
resource usage is oversubscribed (e.g., violations of 
load assumptions). Common methods for dealing with 
this kind of overload include logging the problem, 
instructing external systems to reduce their load, 
locking out interrupts for overloaded channels, and 
reducing the functionality of the software system, or 
even halting or suspending a process or a computer. In 
addition, software can change operational behavior to 
handle the load. For example, the system may use 
faster algorithms to keep up with the workload, but 
produce outputs with reduced accuracy. 
Software systems should define the desired response to 
an overload condition. Typically, the performance of a 
software system will degrade, which implies that the 
system may disable various capabilities. In these 

situations, software systems should inform operators of 
the degradation. 

Adhering to this practice allows software systems to 
continue to operate and catch up to the input data or 
processing rates, when possible and appropriate. 

Practice 33: Design software systems to quety their 
environments. In some instances, system problems may 
arise because of defects in external systems. Therefore, 
some software systems may need to query external 
components to determine if they have failed [14]. For 
example, if a software system continues to timeout 
bemuse it is has not received input from an extemal 
system then it may make sense to shutdown the system or 
change its operation until someone repairs the external 
system. This practice may help to reduce the number of 
falsely reported defects. 

Practice 34: Use feedback loops to detect internal and 
external failures. A feedback loop should execute a 
diagnostic procedure that determines if a failure has 
occurred, the source of the failure, and if corrective action 
is required. Unused inputs from a feedback loop probably 
indicate a deficiency in the design or implementation of 
the software. Similarly, a missing feedback loop may 
indicate an incomplete design or implementation. This 
practice benefits software systems by making them more 
reliable. 

Practice 35: Specifv the minimum and maximum 
expected execution times for a computation. If a 
computation requires less time than expected then a 
failure may have occurred preventing the system from 
performing the desired computation. If a computation has 
taken longer than expected then the system may be in a 
deadlock situation or the system may be waiting for input 
from a defective component, module, or external system. 
In either case, something may have gone wrong and 
adherence to this practice tends to improve system 
reliability and safety. 

A particularly important type of computation is an 
atomic transaction. Since systems must revoke 
transactions of this nature, revocation of partially 
executed transactions may require that system analysts 
specify the times and conditions when cancellation can 
automatically occur, as well as the wamings that the 
system may issue. 

Practice 36: Specgy the conditions where sostware 
systems can return to normal processing load afier 
encountering an anomaly. Adherence to this practice 
prevents a system from reentering an anomalous situation. 
After detecting a capacity violation, for example, the 
system should not begin normal processing too quickly 
because the circumstances that caused the capacity 
violation may still exist and cause the system to violate 
the capacity limitation once again. 

Practice 3 7: Design software to handle all credible 
anomalies. This practice enables software to detect, 
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isolate, and correct single anomalies, which improves the 
reliability of software. 

Practice 38: Design sofhvare to handle successive, 
interrelated anomalies critical to its well being. 
Analyzing multiple anomalies and determining what to do 
about them is a difficult task; therefore, it is prudent to 
address only interrelated anomalies that can do significant 
harm. 

3.7. Finite State Machine Modeling Practices 

Practice 39: Design system-wide control logic a v  
table-driven akterministic finite state machines. Using 
finite state machines as a basis for system design, all 
components of a system, with the exception of the 
controller that controls those components, are passive and 
simply provide services to the active controller. Since the 
controller is the only active component in a system, 
software professionals can easily understand, validate, 
and modify the system behavior. In addition, software 
systems using a table-driven approach operate very 
efficiently. Further, data stores can represent finite state 
machines, which permits programmers to define multiple 
instances of finite state machines and their associated 
behaviors without actually changing code. In sum, this 
approach provides a very flexible and reliable means for 
controlling a software system. 

Practice 40: Design finite state machine models of 
sofiare systems to satisfy the following constraints: ( I )  
every state must have a defined transition for every 
possible input and (2) every state muvt have a defined 
transition to handle caves where a timeout occurs. This 
scheme guarantees that the system will process all valid 
and invalid data, as well as handling situations were the 
system expects data, but the data does not arrive when 
expected. The beneficial aspect of this practice is that it 
ensures that all data is processed or that a failure is 
recognized. A program could validate this practice if it 
had access to machine-readable representations of finite 
state machines. 

Practice 41: When modeling a system wing finite state 
machines, ensure that eve ry state is reachable from its 
start state. An unreachable state indicates a flaw in the 
requirements or design. Given machine-readable 
representations of finite state machines, a program could 
verify adherence to this practice. 

Practice 42: Eliminate soft and hard failure modes for 
all risk-reducing states, and akjine both soft and hard 
failure modes for risk-increasing outputs. Whenever a 
system is attempting to transition to a more functional 
state, it should never permit a failure to occur that would 
put its health in worse shape. Contrarily, when a system 
enters a less capable state it should have both graceful and 
hard fallback options [ 141. 

4. Summary and Conclusions 

As part of an ongoing software process improvement 
activity, JPL has defined new requirements that software 
development personnel must follow and guidelines that 
they should follow. Hundreds of best practices were 
identified to support the effort, of which 42 were reported 
herein as general software design practices. These 
practices can be. used to train software engineers, evaluate 
and define software development practices, and as a 
source of ideas for automating software design. 

Unfortunately, few specification, modeling, or 
programming languages or integrated development 
environments are available to practicing software 
engineers that provide or encourage the use of many of 
these practices. Instead, current software engineering 
practice still places most of the burden of good analysis, 
design, and programming on the software professional, 
although sofiware tools, such as compilers and integrated 
development environments could handle more of it. 

Conventional programming languages, for example, 
suffer fiom several limitations. The software design 
practices already discussed identifj, five of them. First, 
conventional programming languages do not treat 
numbers as importantly as they should. More specifically, 
they do not allow programmers to specify the required 
precision or accuracy of numbers, nor do they compute 
the accuracy of numeric computations. Furthermore, they 
do not generally permit the specification of the allowable 
range of values that a numeric variable can assume. 
Second, programming languages do not have built-in data 
types corresponding to common types of measurements. 
Third, programming languages do not provide 
mechanisms for bounding the length of a computation or 
raising errors when such bounds are violated. Fourth, 
programming languages do not have built-in 
representations for state machines. Fifth, modern 
programming languages do not provide higher-level 
abstractions as exemplified by QA4 [23] and SETL [24]. 

Practitioners need these capabilities in their 
programming languages because they are overwhelmed 
by the problems that they are asked to solve. For example, 
the navigation software that JPL uses consists of 8 million 
source lines of code, and it is growing. The complexity of 
this one subsystem, of a much larger system is beyond 
human comprehension and is not verifiable. To make 
such a subsystem understandable requires an order of 
magnitude reduction in specification complexity. It has 
also been stated that such an order of magnitude 
improvement is required in language design to have 
people migrate fiom one language to another [13]. 
Although Java is an improvement over C and C++, it does 
not provide an order of magnitude improvement in 
personnel productivity or software quality. Instead, it has 
succeeded by providing modest improvements compatible 
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with existing, widely used languages. Hence, it does not 
help improve society’s need to build systems that are 
more complicated in a time and cost effective manner. 

Visual modeling languages, such as the Unified 
Modeling Language (UML) [2], are great for enforcing a 
common interpretation of a design. That is, UML defines 
rules goveming the interpretation of diagrams. However, 
graphical representations have several limitations. First, 
deployment and class diagrams have marginal value. That 
is, most editors and integrated development environments 
provide utilities to rapidly define and acquire this same 
information. Second, sequence diagrams are difficult to 
specify repetitive operations. For example, try expressing 
Q i ~ S 3 p ( i ) d o s , , s , , . . . s , w h e r e  S is a set of 

elements, p is a Boolean predicate, and S! is a language 
statement. Third, UML modeling tools do not provide 
capabilities to validate state diagrams, although they 
could ensure that (1) every state has a transition for every 
possible input, (2) time-dependent states have a state 
transaction for handling timeout conditions, and (3) every 
state is reachable. 

Most integrated development environments also are 
severely flawed. First, it is extremely rare to find an 
environment that has the capability to measure design (or 
code) quality, although several studies have shown the 
benefits of metrics that measure coupling, cohesion, 
encapsulation, class inheritance depth, and function fan- 
out [ 13. Second, no integrated development environment 
provides a capability to capture design options and 
decisions or the rationale for choosing one option over 
another, although there are numerous formal decision 
making techniques that have been applied in other 
industries and significant research has been conducted in 
design rationalization (e.g., [8], [18]). 

Markowitz created modem portfolio theory in the early 
1950s [15] and similar ideas can be applied to software. 
His contributions were two-fold. First, he determined how 
one could compute an efficient &ontier of optimal 
solutions measured by return on investment for any level 
of risk. Second, he developed utility theory, which are 
methods for selecting an acceptable level of risk. The 
assets that he could invest in at the time were various 
stocks and bonds; he defined risk as the possible deviation 
of the expected rate of return of an investment. 

Unfortunately, after thirty or so years of software 
experiments this profession has little data that indicate the 
relative merits between various software development 
schemes that improve personnel productivity and product 
quality. The field should be able to claim that one 
technique, say, software inspections, is 1.57 times more 
cost effective than software reviews and that the variance 
between the two methods for discovering defects is 0.63. 
If such information was available, practitioners could 
optimally identify the level of effort they should expend 

applying each technique given the level of risk they are 
willing to accept. In sum, more work needs to address this 
issue; folklore is no longer sufficient. 

Several design practices that this paper identifies can 
provide a foundation for an improved design 
methodology. First, architects should decompose software 
systems into smaller modules. Second, these smaller 
modules, and their underlying components, should model 
the problem domain. Such modeling helps to create 
natural system boundaries, which reduces module 
coupling and increases module cohesion. Third, architects 
should define strict behavioral interfaces for every 
module of the system. Fourth, architects should stop 
designing a system when they reduce the size of each 
module to the point where productivity is high, where 
introduced defects are low, and where the rate of change 
on each of these two dimensions begins to change rapidly. 
Such a point is generally around 5,000 source lines of 
code, or 100 function points [9]. In fact, function point 
computation is an appropriate way to estimate software 
size. This is because function point methodologies 
attempt to compute software complexity in terms of data 
and control complexity. Function point methodologies 
also estimate the algorithmic complexity of various 
problem domains (e.g., mathematical programming, real- 
time computing) and attempt to normalize for such 
problem domains. Fifth, architects should create 
appropriately sized specifications. Such specifications 
should include a description of the entire decomposition 
of the system into its various components and the 
interactions among the modules. In addition, these 
specifications should provide detailed descriptions of the 
interfaces of each module, including descriptions of the 
formal parameters, return values, pre- and post- 
conditions, and possible error conditions of each function 
provided by each interface, and the underlying 
assumptions of each interface. 

Once the architects have designed the architecture, 
they should conduct a realistic simulation based on 
functional test cases by defining stubs for each module 
that respond appropriately to each input. Thus, after the 
successful execution of the simulation for every 
functional test, the architects would have validated the 
entire architecture. Afterwards, an organization could 
implement individual modules in parallel using as many 
people as there are modules, if needed. As long as each 
component adhered to its specification, the system would 
work as validated at the architectural level. If a 
component did not satisfy its specification, its small size 
would permit an organization to rapidly correct or replace 
it and later validate it. Most importantly, using this 
methodology a development team could validate a system 
design before it completely implements the design, which 
is contrary to current practice. 
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In conclusion, this paper has identified several design 
practices that help software engineers more effectively 
develop better products. It has also identified several 
weaknesses in the way the profession develops software 
and proposes some alternative solutions. The value of 
these alternatives has not yet been determined. 
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