
THE COMMON COMPONENT ARCHITECTURE (CCA)
APPLIED TO SEQUENTIAL AND PARALLEL

COMPUTATIONAL ELECTROMAGNETIC APPLICATIONS

DANEL S. KATZ, E. ROBERT TISDALE, CHARLES D. NORTON

Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive,
Pasadena, CA, 91 109, USA

E-mail: {Daniel.S.Katz, E.Robert.Tisdale, Charles.D.Norton)@jpl.nasa.gov

The development of large-scale multi-disciplinary scientific applications for high-performance
computers today involves managing the interaction between portions of the application developed
by different groups. The CCA (Common Component Architecture) Forum is developing a
component architecture specification to address high-performance scientific computing,
emphasizing scalable (possibly-distributed) parallel computations. This paper presents an
examination of the CCA software in sequential and parallel electromagnetics applications using
unstructured adaptive mesh refinement (AMR). The CCA learning curve and the process for
modifying Fortran 90 code (a driver routine and an AMR library) into two components are
described. The performance of the original applications and the componentized versions are
measured and shown to be comparable.

1 Introduction

The work described in this paper was undertaken to answer the following
questions regarding the Common Component Architecture (CCA):

How usable is the CCA software? What work is involved for a scientist
to take previously written software and turn it into components,
particularly for parallel components?
Once the components exist and are linked together, how does
performance of the componentized version of the application compare
with that of the original application, again, particularly for parallel
components?

The paper does not deal with the question of why one might choose to use
components. It assumes that the reader has an interest in using components,
and wants to understand the implications of choosing to use the CCA
software for this purpose.

The remainder of this paper will describe the initial software, describe the
componentization process, and provide and analyze the timing
measurements, and finally summarize the answers to the questions.

2 The Common Component Architecture (CCA)

The CCA Forum [I] was founded in January 1998, as a group of
researchers from national DOE labs and academic institutions committed to
defining a standard Component Architecture for High Performance
Computing. The CCA Forum noticed that the idea of using component
frameworks to deal with the complexity of developing interdisciplinary HPC
applications was becoming increasingly popular. Such systems enable

katz-ic-sec02-paper.doc submitted to World Scientific 10/8/02 : 12:37
114

mailto:Charles.D.Norton)@jpl.nasa.gov

programmers to accelerate project development through introducing higher-
level abstractions and allowing code reusability, as well as provide clearly
specified component interfaces which facilitate the task of team interaction.
These potential benefits encouraged research groups within a number of
laboratories and universities to develop, and experiment with prototype
systems. However, these prototypes do not interoperate.

The need for component programming has been recognized by the
business world and resulted in the development of systems such as COMA,
DCOM, Active X and others. However, these systems were designed
primarily for sequential applications and do not address the needs of HPC.

The objective of the CCA Forum is to create a standard that both a
framework and components must implement. The intent is to define a
minimum set of conditions needed to allow high performance components
built by different teams at different institutions to be used together, and to
allow these components to interoperate with one of a set of frameworks,
where the frameworks may be built by teams different from those building
the components. The CCA forum members are developing implementations
of the standard as well, both components and frameworks.

3 The Non-Componentized Software

The original JPL software consisted of two units. The first was the 2-
dimensional, parallel version of the Pyramid unstructured Adaptive Mesh
Refinement (AMR) library [4], developed at JPL over the last few years.
Pyramid uses the MPI library for its interprocessor communication. The
second was a driver routine for this library [2]. The driver is also parallel, but
it does not have any communications routines, since they are all handled
within Pyramid. All of the original software was written in Fortran 90,
though Pyramid requires an additional library called ParMetis, that
determines a repartitioning for the parallel version of the Pyramid library.
ParMetis was only used as a binary library, and was not modified in any way
in this work. The function of the software is to read in a mesh resulting from
an electromagnetic problem, and to (possibly repeatedly) refine a region of
this mesh.

4 Componentization of the Software

The initial work on this task [3] included development of simple single
component and two component example applications. After these were
developed, the only problem that had to be overcome to componentized the
sequential software was building a C++ wrapper for the Fortran Pyramid
library, and translating the driver code into C++, as the CCA framework
(Ccaffeine) required components to be written in C++.

The CCA model for parallel applications is a Single Component,
Multiple Data (SCMD) model. In this model, one process of each
component exists on all processors. In a given processor, one components

katz-ic-sec02-paper.doc submitted to World Scientific 10/8/02 : 12:37
214

communicates with another component through the framework.
Intercomponent communication takes place as expected, using a library such
as MPI. A component in one processor cannot communicate directly with a
different component in a different processor.

As mentioned above, Pyramid uses the MPI library to communicate, and
the driver component does not do any communication. Thus the only real
differences between the sequential and parallel versions of the application are
in launching the framework in parallel and ensuring that the components are
also started in parallel. For the current framework, it can be launched on
multiple processor by simply starting it with mpirun -np $number

$path-to-ccaffeine. Since the driver code and the Pyramid library were both
written in such a way that they can run on one or more processors, no
changes needed to be made to the driver or Pyramid components.

5 Timing Results

For each run of the application, two times were measured, the maximum time
from the before the fist call to the library to after the last call to the library
over the set of processors in a given run, and the wall clock time. These two
times were not significantly different for any run. Figure 1 shows the results
from the parallel experiments. (Sequential results are not shown in the
interest of space.) Each result is the average of 5 to 10 runs.

10000

1000

100

10

1
2 4 8 16 32

Number of Processors

Figure 1.Timing results for the parallel component vs. driverflibrary application.

These results show an insignificant difference between the speed of the
component application and the driverllibrary application on 2 to 32
processors. In some cases, the component application is slightly faster, in
others, the driver/library application is slightly faster. The key point is that

katz-ic-sec02-paper.doc submitted to World Scientific 10/8/02 : 12:37
314

the scalability is unchanged between the versions; the CCA framework has
no effect on how the parallel application scales.

6 Conclusions

The lessons learned in this work are:
There was initially a fair amount of learning associated with use the CCA
Forum’s technology, including the CCAFEINE framework. It took 2-3
months to componentize the first application, though the second was
componentized fairly quickly. Once the sequential application was
componentized, proceeding to the parallel application was simple.
The lack of a means to write Fortran90 components is a serious
shortcoming for many science applications. It is possible to get around
this shortcoming, but this introduces additional work for the
componentizer and adds the chance for additional errors to come into the
application.
Once an application is componentized, if the amount of work done in
each component call is large when compared with the time needed to
make a function call, it is likely that the componentized version of the
application will perform well.

The authors’ knowledge of ongoing work within the CCA Forum leads them
to believe that the first issue has been mostly resolved, and the second issue
will be resolved in time, most likely in less than 9 months. Once this is done,
the CCA model will be a promising method for building large single-
processor and parallel applications.

In the next year, an effort will be undertaken to continue to resolve the
first two issues above (flattening of the CCA learning curve and ensuring the
Fortran90 components can be used in CCA.) Additionally, plans exist to turn
a climate application into a CCA application.

References

1. Armstrong R., Gannon D., Geist A., Keahey K., Kohn S., McInnes L.
C., Parker S., Smolinski B., Toward a Common Component Architecture
for High-Performance Scientific Computing, Proceedings of High
Performance Distributed Computing, (1999) pp. 115-124.

2. Cwik T., Coccioli R., Wilkins G., Lou J. and Norton C., Multi-Scale
Meshes for Finite Element and Finite Volume Methods: Active Device
and Guided-Wave Modeling, Proc. of AP2000 Millennium Mtg. (2000).

3. Katz D. S., Tisdale E. R., and Norton C. D., A Study of the Common
Component Architecture (CCA) Forum Software, Proceedings of High
Performance Embedded Computing (HPEC-2002), (2002).

4. Norton C. D., Lou J. Z., and Cwik T., Status and Directions for the
PYRAMID Parallel Unstructured AMR Library, 8th Intl. Workshop on
Solving Irregularly Structured Problems in Parallel (15th IPDPS),
(200 1).

katz-ic-sec02-paper.doc submitted to World Scientific 10/8/02 : 12:37
414

