
Architecture, Language, 
and Non-compositional Constraints 

Erann Gat 
Jet Propulsion Laboratory 

California Institute of Technology 
gat@jpl.nasa.gov 

Abstract- In the realm of building construction and 
computer hardware, the word “architecture” means a set 
of features shared by a class of designs, or equivalently, a 
set of constraints on a class of designs ( e g  gothic 
architecture or RISC architecture). But in the realm of 
software, the meaning of “architecture” has changed to be 
more or less synonymous with “design.” This is 
unfortunate because the concept of architecture-as- 
constraint is potentially useful: properly chosen 
constraints can guide engineers towards good designs and 
away fiom bad ones (and, of course, poorly chosen 
constraints can have the opposite effect). 

We can identify two distinct classes of architectural 
constraints. Compositional constraints are constraints on 
the structure of a software system, while non- 
compositional constraints are constraints on the 
mechanisms for constructing that structure. On this view, 
“structured programming”, for example, is an architecture 
that imposes non-compositional constraints on the use of 
the GOT0 statement. 

The concept of non-compositional constraints has been 
largely ignored by the software engineering community. 
This has been in some cases a serious impediment to 
progress. For example, the JPL Mission Data System 
(MDS) is an architecture based on the non-compositional 
constraint that spacecraft should be controlled using goals, 
which are defined as constraints on state variables over 
time intervals. This is a very simple and straightforward 
concept with significant benefits, but because it is a non- 
compositional constraint and therefore unfamiliar, MDS 
has not been received with unalloyed enthusiasm. 

This paper offers an informal discussion of non- 
compositional constraints (NCC) in hopes of making the 
concept more familiar and accessible. It describes the 
relationship of NCC and programming languages, and the 
applicability of the concept to the problem of verification 
and validation of spacecraft autonomy software. 

TABLE OF CONTENTS 

1. INTRODUC~ON ....................................... 1 
2. COMPOSITIONAL AND NON- 

COMPOSITIONAL CONSTRAINTS ... 2 

3. NON-COMPOSITIONAL CONSTRAINTS AND 
LANGUAGE ................................... 2 

SPACECRAFT CONTROL 
ARCHITECTURES .......................... 2 

4. APPLICATION TO AUTONOMOUS 

5 RECAP ...................................................... 4 
6 CONCLUSION ........................................... 5 
7 ACKNOWLEDGEMENTS ........................... 5 
REFERENCES ............................................... 5 

1. INTRODUCTION 
In the realm of software, the word “architecture” has come 
to be more or less synonymous with “design.” (The 
dictionary definition of architecture in the context of 
software is “The overall design or structure of a computer 
system, including the hardware and the software required 
to run it.”) But in the realm of building construction and 
computer hardware, the word “architecture” has a very 
different meaning, namely, a set of common features 
shared by a class of designs, or equivalently, a set of 
constraints on a design. For example, Romanesque 
architecture is characterized by round arches and narrow 
windows. RISC architecture is characterized by simple 
instruction sets and large numbers of equipotent registers. 

On this view of architecture (architecture-as-constraints), 
designs conform to or are instances of architectures. The 
realm of computer software also has this concept, but 
there isn’t a term to describe it any more, the word 
“architecture” having been largely co-opted. 

IEEEAC paper #1107, Updated October 15,2002.0-7803-7651-X/03/$17.00 0 2003 IEEE 1 

1 

mailto:gat@jpl.nasa.gov


There are a few residual examples of the word 
“architecture” retaining its original meaning. For 
example, a three-tier architecture is not a single design but 
a class of designs’. Brooks’s subsumption architecture 
[Brooks861 originally referred to a class of designs3. But 
these are the only two examples I was able to find of 
architecture-as-constraint that were actually called 
architectures. 

There are also examples of architecture-as-constraint in 
software that are not referred to as “architecture.” For 
example, structured programming can be viewed as a set 
of constraints on the use of GOTO statements. Unix was 
originally a single design, but now refers to a class of 
designs that share common constraints on the mechanisms 
for component interactions. Object-oriented 
programming is a set of constraints on the relationship 
between data and the operations on that data. All of these 
are examples of architecture-as-constraint. So the concept 
has not been entirely lost, but it has become moribund. It 
is much harder to think about a concept when there is no 
word for it. 

The concept of architecture-as-constraint is potentially 
useful because well-chosen constraints can lead designers 
away from poor designs and towards good ones. But it is 
also potentially harmful if one attempts to design under 
poorly chosen constraints. It is therefore worthwhile to 
reintroduce this concept into the lexicon so that it can be 
discussed. 

2. COMPOSITIONAL AND NON-COMPOSITIONAL 
CONSTRAINTS 
When discussing software architecture-as-constraints it is 
useful to distinguish between compositional constraints, 
which constrain the structure of subsystem 
decomposition, and non-compositional constraints which 
constrain composition mechanisms. For example, the 
constraints of the three-tier architecture are compositional 
constraints because they constrain how to compose a 
system fkom subsystems. As a rule-of-thumb it is possible 
to express a compositional constraint as a block diagram 
(see figure 1). 
In contrast, the constraints of structuredprogramming are 
non-compositional. They constrain the mechanism for 
composing subsystems (limiting the use of the GOTO 
statement in favor of function calls, FOR and WHILE 
loops) but they do not constrain the structure of the 
composition. While it is possible to draw a block diagram 
of a system built according to the constraints of structured 

~~ 

* Actually, it is two classes of designs. It usually refers to 
an autonomy architecture consisting of a controller, 
sequencer, and deliberator [Gat981 

In Brooks’s seminal paper the term is introduced with 
the article “a”, not “the”, as in “a subsumption 
architecture.” 

2 

programming, it is not possible to draw a block diagram 
of structured programming itself, the way it was possible 
to draw a block-diagram of the three-tier architecture. 

3. NON-COMPOSITIONAL CONSTRAINTS AND 
LANGUAGE 
An important observation about non-compositional 
constraints is that they usually require some form of 
language support in order to realize their full benefit. For 
example, it is possible to do structured programming in 
assembly language (this is how structured programming 
was in fact originally done) but the full benefit of 
structured programming is usually not realized unless one 
uses a higher-level programming language like C that 
allows structured programming consthcts to be entered 
directly. The reason for this is obvious: by using a higher- 
level language, the parser and compiler for that language 
can automatically enforce the non-compositional 
architectural constraints and relieve the programmer fiom 
the burden of having to enforce those constraints 
manually. 

Another example: it is possible to do structured error 
handling in C despite the fact that the language provides 
no direct support for it. Idioms such as the following are 
ubiquitous in C code: 

if ( (result = f ( )  ) == ERROR) { 
print-errormessage(); 
exit(); 

1 
else if ((result = g(resu1t)) == ERROR) { 

print-error-message 0; 
exit(); 

else 1 if ((result = h(resu1t)) == ERROR) t 
print-error-message ( )  ; 
exit ( )  ; 

} 

This leaves the burden of enforcing non-compositional 
architectural constraints on the programmer, and so results 
in higher development costs and greater probability of 
error. The programmer can be relieved of this burden by a 
language like C++ that provides direct support for 
structured error handling in the form of exceptions. The 
result is much cleaner, more reliable code, e.g.: 

try t 

} 
catch ( . .  . )  I 

result = h(g(f())); 

print-error-message(); 
exit(); 

1 

4. APPLICATION TO AUTONOMOUS 

The concept of non-compositional constraints has 
practical application in the area of autonomous spacecraft 

SPACECRAFT CONTROL ARCHITECTURES 



control. Traditionally spacecraft have been controlled 
using time-based sequences of commands. These 
sequences are essentially little programs where time 
serves as the “program counter”. (Notice that this is a 
non-compositional constraint.) The advantage of this 
design is predictability: the spacecraft’s behavior can be 
modeled on the ground to insure that a command 
sequence will have its intended effect. 

The disadvantage of the traditional architecture is a lack 
of robustness in the face of unexpected events, 
particularly hardware faults, which are usually handled by 
entering safe mode. Unfortunately, there are cases where 
safe mode isn’t safe (during an orbit insertion for 
example, where entering safe mode can result in loss of 
mission). Such cases require critical sequences which can 
run with the usual fault-protection disabled. Critical 
sequences are very difficult and expensive to generate. A 
single critical sequence can consume a significant portion 
of a mission’s total development budget. 

(Incidentally, note that although the command-and-control 
architecture is based on a non-compositional constraint - 
the use of time as a program counter -- the traditional 
spacecraft software architecture (within which the 
traditional spacecraft command and control architecture is 
embedded) is compositional, as shown by the fact that you 
can draw a block diagram of it (see figure 2).) 

New classes of missions currently in design require 
greater degrees of autonomy than the traditional control 
architecture can easily provide. In some cases, like comet 
rendezvous and sample return missions, most of the 
mission becomes one big critical sequence. 

In such cases there is reason to believe that the traditional 
control architecture will fail, and that this failure cannot 
be easily repaired. I will support this claim by appealing 
to an analogy, to which I now make a brief digression. 

In ancient times the craft of constructing buildings out of 
stone reached dramatic heights, both literally and 
figuratively. But the physics of stone as a building 
material place a fundamental limit on how tall a stone 
building can be before it will collapse under its own 
weight. To build a skyscraper requires a paradigm shift: 
new building materials, and new construction methods. 

I argue that an analogous situation exists in spacecraft 
software. The fundamental informatics (the “physics” of 
software) of the traditional control architecture place 
fimdamental limits on what can be achieved. To illustrate 
this, consider the following simple command sequence: 

At time T1 do A 
At time T2 do B 

(Assume Tl<T2.) 

Now consider the question of what happens if A fails. 
How does this impact the execution of B? There is no 
way to know; the information just isn’t there. It has been 
compiled away during the sequence design process. 
Without more information there is just no way for a 
control system, no matter how cleverly designed, to deal 
intelligently with a failure in a traditional spacecraft 
control sequence. If we want to build a command and 
control architecture that can deal intelligently with failures 
and other unexpected events we must add information 
somehow. 

There are at least two possible ways to add the required 
information. One is to augment the traditional sequencing 
ontology with additional control constructs, such as 
conditionals and loops. For example: 

At time T1 do A. 
If that succeeds then 

otherwise 
At time T2 do B 

at time T3 do C .  

The second approach is to add declarative information, 
e.g.: 

Step 1: At time T1 do A. 
Step 2: At time T2 do B. 

NOTE: The successful completion of Step 1 is a 
necessary precondition for Step 2. 

Or: 

At time T1 do A. 
The result should be that the camera power state 
is ON. 

Or: 

Make the power state of the camera be ON. 

Note that in the last example no actions have been 
specified, only a desired end-state. 

The JPL Mission Data System (MDS) [DvorakOO, 
GatOOb] currently under development includes a new 
command and control architecture based on an extension 
of the last example. In MDS, spacecraft are commanded 
in terms of goals, which are defined as constraints on 
state variables over time intervals. States in turn are 
defined as properties of objects, e.g. the power-state of 
the camera, or the position of the spacecraft. An MDS 
time interval is defined in terms of start and end time 
points, which are not necessarily fmed in time, but can 
“float” subject to temporal constraints , which specify 

3 



While (condition) do { procedure; 1 minimum and maximum elapsed time relative to other 
time points. A set of goals whose time points are related 
to one another by temporal constraints is called a goal net. 

Goal nets subsume traditional time-based sequences as a 
special case, but they are vastly more expressive than 
sequences in ways that can be exploited for many 
purposes. For example, goals include their own 
correctness specification, so merely by adopting the 
ontology of goals one has already made significant 
progress towards software verification and validation, 
since the first step of any V&V effort is to specify what 
the behavior of the system ought to be when it is operating 
correctly. 

5 RECAP 
So far this paper has advanced the following argument: 

1 .  There is utility in the concept of architecture as a 
set of constraints on a class of designs. Well- 
chosen constraints can lead designers towards 
good designs and away ftom bad ones. 
Architectural constraints in the realm of software 
can be divided into two broad categories: 
compositional constraints, which govern the 
structure of a system, and non-compositional 
constraints, which govern the mechanisms used 
to achieve that structure. 

3. Non-compositional constraints often require 
language support to realize their 1 1 1  benefit. 

2. 

The support for this argument is weak, appealing mainly 
to anecdotal evidence and intuition. At best, points 1-3 
constitute a hypothesis. But this hypothesis makes a 
testable prediction: 

An effort to construct an autonomous spacecraft control 
architecture will progress more quickly if it employs either 
1) a programming language whose constructs match the 
non-compositional constraints of the architecture or 2) a 
programming language that allows such constructs to be 
added. 

MDS is currently being developed in C++, which does not 
have constructs that match the fimdamental non- 
compositional constraint of MDS, namely, that spacecraft 
should be commanded in terms of goals. C++ does have 

the ability to construct object-based representations of 
goals, but it can not be easily extended to directly 
represent a goal. In other words, the only way to create a 
goal within C++ is to write C++ code that constructs an 
instance of a goal class. 

To see why this may not be the best option, consider what 
it would be like if one had to do structured programming 
in this manner. Instead of: 

One would have to write something like: 

Class MyTest { 
Boolean testIt0 { return 

condition; 1 
} 
Class MyBody { 

1 
WhileLoop w = new WhileLoopO; 
w.test = new MyTestO; 
w.body = new MyBodyO; 
w.run0; 

Void doIt0 { procedure; } 

There are other shortcomings of C++ that have motivated 
the MDS project to seriously consider replacing it with 
Java, but note that Java does not help at all with respect to 
the issue at hand. In fact, the Java thread model and the 
“Runnable” interface exist precisely because Java does 
not have a “spawn” construct, and also does not have the 
meta-linguistic abstraction capabilities needed to add such 
a construct to the language. 

At this point it would seem that we have reached an 
impasse. Programming languages like C++ and Java are 
the results of hundreds of work-years of design and 
implementation effort. Their designs are set by 
standardization committees, and making changes or 
additions takes years. It would seem that we have no 
alternative but to simple make the best of the situation, 
and perhaps hope that something better will come along in 
ten years or so. 

But there are actually three alternatives: 

The first is to use one or more small custom-design 
domain-specific languages (DSLs) and write interpreters 
(or compilers) for them in the base implementation 
language. This approach is being used on MDS, where a 
small DSL called GEL (Goal Elaboration Language) has 
been designed specifically to express goals. Another 
example is the Virtual Machine Language (VML) under 
development at JPL [ref##]. 

The second is to use automatic code generation to compile 
a superset of an existing language down into the base 
language. This approach has been used in numerous 
contexts, including the DSl fault protection system 
[Rouquette99]. 

The third is to use languages with meta-linguist 
abstraction capabilities such as Scheme [KelseyO 11 or 
Goo [Goo]. This approach was used on the Remote Agent 
Executive [Pel1981 where a domain-specific language 
called ESL was implemented as a direct extension to 
Common Lisp. The efficacy of this approach is illustrated 
by the fact that ESL consists of only about 2000 lines of 
source code. There is also some statistically significant 
evidence that Lisp can significantly reduce schedule risk 

4 



in software development projects [GatOO]. 

6 CONCLUSION 

The purpose of this paper has been to suggest some 
directions for future research, and to argue why I believe 
those directions might prove hitful. In particular, I argue 
it is beneficial to think explicitly about non-compositional 
architectural constraints, and about language constructs to 
provide support for those constraints. The cost of 
providing such support can be much lower than is 
commonly believed. I have supported my argument with 
anecdotal evidence only. Accordingly, I do not claim to 
have demonstrated anything here. 

7 ACKNOWLEDGEMENTS 

This work was performed at the Jet Propulsion 
Laboratory, Califomia Institute of Technology, under a 
contract with the National Aeronautics and Space 
Administration. 

REFERENCES 
[Brooks861 Rodney A. Brooks, "A Robust Layered 
Control System for a Mobile Robot", IEEE Journal on 
Robotics and Automation, vol RA-2, no. 1, March 1986. 

[DvorakOO] Dan Dvorak and Robert Rasmussen. 
"Software Architecture Themes in JPL's Mission Data 
System." Proceedings of the IEEE Aerospace 
Conference, March 2000. 

[Gat971 Erann Gat. ESL: A language for supporting 
robust plan execution in embedded autonomous agents. 
Proc. of IEEE Aeronautics (AERO-98), Aspen, CO, IEEE 
Press, 1997. 

[Gat981 Erann Gat. Three-Layer Architectures. in D. 
Kortenkamp et al. eds. AI and Mobile Robots. M I  
Press, 1998. 

[GatOOa] Erann Gat. Lisp as an Alternative to Jave. 
Intelligence 1 l(4): 2 1-24,2000. 
Scheme 

[GatOOb] Erann Gat. The MDS Autonomous Control 
Architecture. World Automation Congress (WAC), 2000. 

[Goo] Goo (Generic Object Orientator) is a programming 
language invented by Jonathan Bachrach. There are no 
formal publications about Goo, but there is extensive 
documentation on the Web at 
http:/lwww.googoogaga.orgl 

[KelseyOl] R. Kelsey, W. Clinger, J. Rees (eds.), Revised5 
Report on the Algorithmic Language Scheme, Higher- 

Order and Symbolic Computation, Vol. 11, No. 1, 
September, 1998. 

[Pel1981 Barney Pel1 and Erann Gat. Smart Executives 
for Autonomous Spacecraft. IEEE Intelligent Systems, 
October 1998. 

[Rouquette99] Nicolas Rouquette. The 13" Technology 
of Deep Space One. Proceedings of the IEEE Aerospace 
Conference, 1999. 

[Steele90] 
Language, Second Edition, Digital Press, 1990. 

Guy L. Steele Jr., Common Lisp: The 

Erann Gat 
the Jet 
California 
where he 
autonomous 
since 1988. 

is a principal scientist at 
Propulsion Laboratory, 
Institute of Technology, 
has been working on 

s control architectures 

5 

http:/lwww.googoogaga.orgl


A Three-Layer Architecture 

Database Web Server 4 b Browser 

Figure 1: Compositional constraints can be expressed as block diagrams. 

Flight 
Fault 

Protection 

+ Sequencing 

AACS 

Figure 2: The traditional spacecraft software architecture is based on compositional constraints. 

6 




