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Abstract-The Science Activity Planner (SAP), currently un- 
der development by our group at the Jet Propulsion Labora- 
tory, will be the primary tool used for science data assess- 
ment and science activity planning during the Mars Explo- 
ration Rover (MER) mission. As part of its data visualiza- 
tion capability, S A P  interactively displays 3D terrain sur- 
face data corresponding to the MER image data products. 
These datasets can be very large, e.g. on the order of tens 
of millions of vertices for a panorama, so it is a challenge 
to load and display them at interactive speeds on a worksta- 
tion. We describe the software techniques we are implement- 
ing to address this challenge and present recent test results. 
A fundamental development is the new Visible Scalable Ter- 
rain (ViSTa) format, a flexible and precise interchange format 
for terrain data. Other developments include multi-threaded 
asynchronous event-driven data loading, practical heuristics 
for geometry LOD and texture resolution selection, multi- 
level garbage-collector friendly data caching, and an opti- 
mized ray intersection system. 
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1. INTRODUCTION 
The Mars Exploration Rover mission (MER), [7], is sched- 
uled to land two rovers on the surface of Mars in early 2004, 
extending the technology demonstrated in the 1997 Mars 
Pathfinder mission into a full “robotic field geology” sys- 
tem. The MER vehicles, while based on a similar 6-wheel 
rocker-bogey mobility platform, are larger and much more 
capable than the 1997 Sojourner rover. They will carry a 
compliment of scientific instruments called the Athena Sci- 

ence Payload ( [6 ] )  which includes three spectrometers, a 
multi-wavelength mast-mounted imager called the Pancam, a 
manipulator-mounted microscopic imager, plus several other 
instruments [ 81. Additional high-resolution cameras will also 
be included for use in activity planning and engineering anal- 
ysis. 

With the exception of the microscopic imager, all MER cam- 
eras are actually stereo pairs from which both 2D and 3D 
datasets are acquired. This paper is focused on the software 
techniques we are developing to interactively visualize the 3D 
data, which is especially challenging because the datasets can 
be quite large. 

The MER mission will be operated from JPL for its duration 
by a team of scientists selected from a number of institutions 
and by JPL engineers. Each Martian day, or “sol”, that the 
rovers are active on the Martian surface, the scientists will 
analyze newly acquired downlink data from the MER instru- 
ments and collaborate to produce science activity plans for 
the subsequent sol. These science plans will then be used as 
input to develop the sequences of commands which are ulti- 
mately uplinked to the rovers for execution. 

We are developing a software system called the Science Ac- 
tivity Planner (SAP), shown in Figure 1, which the mission 
scientists will use to analyze the 2D and 3D data from the 
rovers’ instruments and to develop science activity plans. 
SAP is an adaptation for MER of the Web Interface for Tele- 
Science (WITS), which our group has been developing since 
1995 [2]. 

The data visualization components of SAP have been en- 
tirely revamped relative to the corresponding functionality 
in WITS. Many new features have been added, but the bulk 
of the work has been to support high-speed loading, naviga- 
tion, and manipulation of the especially large datasets that 
the MER instruments are expected to produce. Most MER 
cameras have roughly 4 times the resolution of the highest- 
resolution cameras that have been used in the past with WITS, 
which were 640x480. Also, larger collections of images 
(typically “panoramas” taken by rotating mast-mounted cam- 
eras while the rover remains stationary) are expected to be 
used during MER than have been used in the past. 
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Figure 1. The Science Activity Planner (SAP) is the software system the MER mission scientists will use to analyze the 2D 
and 3D data from the rovers’ instruments and to develop science activity plans. This figure shows a typical dual-monitor screen 
layout for operating SAP. The activity planning interface is on the left . The data visualization interface is on the right, where a 
2D view of a dataset is shown above a 3D view of the same dataset. Data shown is from recent field test of the MER-like FIDO 
rover [5 ] .  

The increased quantity of data is especially difficult to deal 
with in the 3D visualization component of SAP, since here 
we must manipulate not only all of the 2D data (for texturing) 
but also the voluminous 3D spatial data which describes the 
structure of the imaged surfaces. 

3 0  Data Acquisition and Processing 

To illustrate the role S A P  plays in 3D science data visualiza- 
tion we review the stages of the 3D data processing pipeline 
from acquisition to display in SAP. We present this review 
here to provide context for the bulk of our discussion in this 
paper, which will be focused on the software techniques we 
use for interactive 3D visualization. The basic steps are: 

1.  acquire a stereo pair of images, called a wedge because 
the camera frusta typically intersect the terrain surface near 
the rover in a truncated wedge shape 
2. pre-process the images to compensate for optical distor- 
tion and other effects 
3. perform stereo correlation to recover disparity values for 
as many pixels as possible 
4. use the disparity values and camera calibration informa- 
tion to produce an array of points in 3D space called an XYZ 
map 
5. triangulate the XYZ map to produce a surface mesh, po- 
tentially dropping some 3D points and repeating to produce 
multiple Levels Of Detail (LOD) 
6. transform the mesh vertex coordinates to the desired out- 
put frame 
7. write the mesh geometry and topology to file 
8. assemble the mesh files for all wedges associated with a 
single camera activity (usually a panorama) into an indexed 
collection 
9. for each wedge in the collection, load the mesh file and 
one of the corresponding image files (typically the left camera 

image is used) 
10. interactively render all meshes in the collection simulta- 
neously as triangulated surfaces textured by the correspond- 
ing images 

The end result of this process, shown in Figure 2, is a visual- 
ization system in S A P  which allows the MER mission scien- 
tists to virtually navigate the terrain the rover has imaged. 

2. RELATED WORK 
Although it is the primary tool to be used by the mission 
scientists for scientific data visualization and science activ- 
ity planning, SAP is not the only tool that will be used during 
MER operations for visualization of 3D instrument data: 

Viz ([4]) is a software package for 3D data visualization 
under development at NASA Ames Research Center. Viz 
provides some types of detailed data analysis, for example 
shadow simulation, that SAP does not currently support. Viz 
is currently limited to 3D datasets only, whereas SAP pro- 
vides full capabilities to visualize both 2D (Figure 1, upper 
right) and 3D (Figure 1, lower right) datasets, and also allows 
science activity planning (Figure 1, left). 

An additional JPL-intemal tool is also under development 
which will be used for engineering activity planning and up- 
link sequence validation. This tool will have its own 3D data 
visualization independent of SAP and Viz. 

Another significant area of related work is the relatively large 
body of research in multiresolution data visualization, espe- 
cially that which is specific to terrain data rendering. One 
well-known.and representative system for terrain rendering is 
ROAM ([9]), which stands for “Real-time Optimally Adapt- 
ing Meshes.” ROAM is an advanced and relatively complex 
system which manipulates a triangulated terrain mesh in real 



Figure 2. A major component of SAP is a 3D visualization 
system which allows the MER mission scientists to virtually 
navigate the terrain the rover has imaged. This figure shows 
a “panorama” of terrain “wedges”. Each wedge was acquired 
by a rotating mast-mounted camera, shown deployed in this 
image (colored cyan in the rover model). Areas in which 3D 
data recovery has failed (typically due to failure of stereo cor- 
relation) are left as holes in the terrain model through which 
the light-blue background is visible. One entire wedge is ab- 
sent in the foreground, likely due to an acquisition or process- 
ing error. Data shown is from recent field test of the MER-like 
FIDO rover [SI. 

time on a per-triangle basis to maximize framerate while at- 
tempting to optimize certain quality-motivated error metria. 
One major issue with ROAM is that, in its usual implementa- 
tion, it supports only 2.5D terrains (i.e. elevation maps). As 
shown in Figure 3, overhangs (which cannot be represented 
by a ground-aligned elevation map) are sometimes critically 
important features of terrains visualized in SAP. During ini- 
tial design, we also felt that the real time per-triangle com- 
putations of ROAM, and of other systems like it, were po- 
tentially overkill in SAP. As shown in Figure 2, the datasets 
we visualize are naturally segmented by virtue of the fact that 
they were acquired in wedges from multiple pairs of stereo 
images, each with a relatively narrow field of view. We pre- 
dicted that a system based on discrete, fixed levels of detail 
for each wedge would be relatively simple to implement and 
would still provide adequate performance and quality. This 
prediction has proved accurate thus far (c.f. Sections 4 and 5). 

3. VISIBLE SCALABLE TERRAIN (VISTA) 
FORMAT 

As we described in Section 1, the result of the terrain process- 
ing pipeline for MER is one or more files containing triangu- 
lated terrain surface data. The format of the subset of these 
files that are read by SAP was carefully designed, as it has 
a large effect on SAP’S data loading performance, and a ma- 
jor impact on the network bandwidth and disk space required 
for data distribution and storage. In prior implementations 

Figure 3. Overhangs are sometimes critically important fea- 
tures of terrains visualized in SAP. This figure shows an ac- 
tual situation that occurred during a recent test of the MER- 
like FTDO rover [SI. The rover has approached an outcrop- 
ping (visible to the right of the rover in this view) which in- 
cludes some overhanging geometry. In subsequent operations 
we attempted to deploy the rover’s instrument arm onto the 
outcropping. 

of WITS an ad-hoc format was used which was the source 
of several major inefficiencies. The larger datasets expected 
to be produced by MER demanded that we revisit this for- 
mat. We evaluated a number of existing formats. as described 
below, and eventually decided that the deficiencies of each 
warranted the design of a new format. 

We have named the new format ViSTa, which stands for “Vis- 
ible Scalable Terrain”, because it is specifically adapted to 
terrain data acquired from stereo vision hardware, and it also 
is designed to support data and performance scalability. We 
have endeavored to design ViSTa so that it is re-usable in any 
system which visualizes terrain acquired from stereo vision 
hardware. In the remainder of this Section we will give only 
an overview of ViSTa. The full specification document, [ 11, 
should always be thoroughly consulted when developing soft- 
ware that reads or writes ViSTa. 

Problems with Existing Formats 

Clearly, if a data format had already existed that was well- 
documented, available for our use, and which met all of 
our needs, then we would have seriously considered using 
it rather than develop our own new format. However, as we 
surveyed the existing formats, we discovered that each had 
one or more major deficiencies with respect to our intended 
use in SAP. 

We do not claim that our survey was exhaustive. It is merely 
what we were capable of performing given our budget and 
time constraints. We do believe we have covered nearly all 
major geometry formats for which full technical documenta- 



tion is readily and publicly available on the internet. 

A number of common terrain data formats are inherently lim- 
ited to 2.5D (Le. elevation map) models. This is reason- 
able given their intended uses, which are typically GIs, mil- 
itarykommercial simulation, and games. However, as Fig- 
ure 3 illustrates, overhangs are sometimes significant and crit- 
ically important features in terrain datasets used in SAP. Thus 
we must omit from consideration all data formats that are 
strictly 2.5D. These include United States Geological Sur- 
vey (USGS) Digital Elevation Model (DEM), USGS Digi- 
tal Terrain Elevation Data (DTED), USGS National Elevation 
Dataset (NED), and Virtual Terrain Project (VTP) Binary Ter- 
rain (BT) format. 

Of course there also exist many fully three-dimensional ge- 
ometry data formats. Mostly these have been developed for 
use in CAD, virtual reality, computer adanimation, games, 
and mathematical visualization applications. Terrain data can 
be represented as a special case in any of these. 

A few of the 3D formats do not include provisions for 
storing texture mapping' information. As we describe in 
the visibility section below, this information is important in 
SAP because it allows the terrain to be colored by its ac- 
tual sensed visual appearance (and other co-registered data), 
which greatly enhances the usefulness of the visualization for 
scientists. 3D formats which do not support texture mapping 
include Autodesk@ Data exchange Format (DXF) and STere- 
oLithograph y (STL). 

Many 3D formats do include texture mapping information. 
However, of these, most have no provisions for data andor 
performance scalability, which typically involves including 
information to construct lower-resolution versions of the full 
model. In the Scalability section below, we elaborate on 
the scalability we desire for SAP'S terrain data. Formats 
which we omit due to lack of scalability support include 
Lightwave@ Scene (LWS), Alias(Wavefront@ OBJect (OBI), 
Visualization ToolKit (VTK), and 3ds maxl""' (3DS). 

Only a few common 3D formats support both texture map- 
ping and scalability. Two of these, SGI@ Open Inventor'"' 
binary format and S G P  OpenGL Performer["' Performer 
Binary Format (PFB), are proprietary. The third, Virtual 
Reality Modeling Language (VRML), is popular and well- 
documented. However, it is an ASCII format, and for large 
datasets we felt that this would lead to greatly inflated file 
sizes and load times relative to a binary format. 

Texture inapping is a process by which a 2 0  image is painted onto the 
faces of a 3 0  nwdel. It is typically accomplished on nwdem workstation 
graphics hardware by associating a pair of normalized texture coordinates 
( s ,  t )  E [0, 112 with each vertex. These texture cooniinates proportwnally 
indicate the position of the corresponding vertex in the 2 0  texture image, 
and interpolating between them gives the texture coordinntes for all points 
on each face. 

Design Goals 

We developed some general design goals for ViSTa in ad- 
dition to addressing the specific deficiencies of the various 
existing formats called out above: 

data accuracy, especially with respect to the abilities to dis- 
play and pick accurate locations on the terrain and to accu- 
rately display overlaid representations of auxiliary science 
data 

minimization of file size 
platform portability 
run-time efficiency in computation and memory usage for 

systems which create, process, and display ViSTa format ter- 
rains 

support of both high-resolutionhesource-intensive and 
lower-resolutiodess-resource-intensive (e.g. public out- 
reach) applications 

support of both single-wedge (Le. all vertices visible from 
the left image of a single stereo pair) and merged multi-wedge 
terrains 

ease of generation from stereo vision data 
ease of integration with MER subsystems which read and 

write terrain data 

viSTa Format Basics 

ViSTa is a binary format composed of fixed-length fields in a 
well-defined sequence. It is specifically designed for the vi- 
sualization of textured terrain surface meshes acquired from 
stereo vision hardware. Geometric data is stored using IEEE 
754 32-bit floating point numbers as this is commonly re- 
quired by modem workstation rendering systems. Because 
the basic ViSTa structure is a contiguous array of vertices 
combined with a set of indexed triangle strips, it should be 
possible on many modem workstations to load the data from 
disk in blocks and send it to the rendering system without 
any per-vertex or per-face loops in the front-end application 
code whatsoever. As we describe below in Section 4, we have 
achieved this in our implementation of SAP. 

All spatial geometric data in a ViSTa file are specified in 
units of meters. All vertices are specified in the same coor- 
dinate system. The specification of this coordinate system is 
implementation-dependent, but in all cases must be Cartesian 
and right-handed. A fixed space is reserved in every ViSTa 
file for implementation-dependent specification of coordinate 
system (this space may be unused in some implementations, 
e.g. if the coordinate system in that implementation is im- 
plicit). 

To keep the ViSTa format flexible and re-usable, we have 
chosen to explicitly leave the syntax and semantics of some 
sections of a ViSTa file implementation-dependent. Spe- 
cific ViSTa implementations are defined by documents which 
specify how each of these sections are to be interpreted. Each 
implementation is assigned a 4-byte implementation identi- 
fier. A system which creates a ViSTa file must specify the im- 
plementation it is using by writing the corresponding imple- 



mentation identifier in the header section of the file. Systems 
which read ViSTa files must check this field and interpret the 
data according to the indicated implementation, or display an 
error message if they do not support the implementation. 

So far we have defined three ViSTa implementations: SMP,  
FDO, and MER. S M P  is a “Simple” implementation that we 
employed for early development and testing. FDO is the im- 
plementation we employed for the F D O  rover field test de- 
scribed below in Section 5 .  MER is the implementation we 
are developing for the MER mission. 

Bounding Boxes 

A ViSTa file includes a direct representation of the axis- 
aligned bounding box that encloses the entire terrain in the 
file, as well as per-texture bounding boxes at each LOD. 
Bounding boxes are very useful because the can be used by 
rendering systems to do high-speed visibility culling for im- 
proved rendering performance. The Java 3D’“’ rendering sys- 
tem that we use in SAP has this feature. We also use the 
bounding boxes in our ray intersection implementation as de- 
scribed below in Section 4. Since the bounding boxes are 
fixed it is more efficient to compute and store them once when 
the ViSTa file is created, rather than have to generate them 
from the terrain data every time the file is loaded. 

ViSTa Layout 

In this section we give an overview of the layout of a ViSTa 
file. However as some details of the ViSTa specification are 
still in flux at the time of this writing, we do not provide the 
lowest-level details. The ViSTa specification, maintained at 
[ 11, defines the syntax and semantics of every field at the bit 
level. 

A ViSTa file is an ordered sequence of fixed-length fields 
which follows this grammar: 

ViSTa := VSTHeader 
BoundingBox 
TextureRefT 
CoordinateSystem 
Vertex+ 
LOD+ 

LOD := LODHeader 
BoundingBoxT 
Patch+ 

Patch := PatchHeader 
IndexArrayLength” 
Index Array” 

IndexArray := Index+ 

The VSTHeader field contains basic information about the 
ViSTa file including the ViSTa format version to which the 

file corresponds, the ViSTa implementation to which it ad- 
heres, byte order, total number of texture references, total 
number of vertices, and total number of LOD. 

The BoundingBox field that follows the VSTHeader 
specifies the corners of an axis-aligned bounding box which 
contains the entire terrain surface defined in the file. 

A Vertex field contains the spatial (2, y, z )  coordinates of 
a vertex on the terrain surface and the normalized texture co- 
ordinates ( s , t )  E [0, 112 at that vertex as IEEE 754 32-bit 
floating point numbers. 

The Vertex+ section is a pool of vertices shared by all 
LOD. Vertex fields in this section are implicitly assigned 
zero-based integer indices according to their position in the 
file. 

A TextureRef is an implementation-specific reference to a 
texture image. All texture images are stored outside the ViSTa 
file. Each TextureRef is implicitly assigned a zero-based 
integer index according to its position in the file. ViSTa files 
containing data from only a single stereo pair normally con- 
tain exactly one TextureRef. In the MER implementation, 
this field is a relative path to a file containing a left-camera 
acquired image. 

The CoordinateSystem field is an implementation- 
specific area where data may be stored to locate the terrain 
defined in the file relative to other terrains andor to externally 
known coordinate frames. Please refer to the ViSTa specifi- 
cation, [ 11, for details on this field. 

Multiple LODs within a single ViSTa file are presented in 
increasing order from least-detailed to most-detailed. Each 
LOD is implicitly assigned a zero-based integer index accord- 
ing to its position in the file. 

An LOD is composed of a header, a set of axis-aligned 
BoundingBoxes, one per texture, and a set of Patches. 

A Patch is a collection of indices into the Vertex pool 
that defines the topology of a chunk of the terrain surface 
at a given LOD which is textured entirely by the image cor- 
responding to one TextureRef. There are two types of 
patches: point cloud and triangle strip. A point cloud patch 
contains a set of zero-dimensional points and is typically used 
only when triangulation is not available or is infeasible. A tri- 
angle strip patch contains a set of triangle strips which define 
a localized region of the terrain surface. Each patch contains 
a header that identifies its type and the index of the Textur- 
eRef to which it corresponds. 

Visibility 

By placing triangles in Patches which each reference a spe- 
cific texture, a ViSTa file specifies an association for each 
triangle in the terrain to a specific texture image such that 



the texture image is (usually the rectified’ version of) an 
image acquired by the left camera of the stereo vision hard- 
ware, or a processed version thereof 

the triangle is visible in the texture image, where the defi- 
nition of visible is that 

1. the mangle is not occluded in any part in the texture im- 
age by any triangle in the same LOD 

2. the geometric back-projection of (front face of) the tri- 
angle into the image plane (see [lo]) is entirely within the 
bounds of the image 

In addition to these rules for vertex visibility, SAP imposes 
additional constraints on the accuracy of the texture coordi- 
nates (s, t) that are associated with every vertex in a ViSTa 
file. 

Texture coordinates for a vertex are accurate if they define a 
point in the texture image plane inside the pixel containing the 
geometric back-projection point of the vertex. This definition 
can also be viewed as an algorithm to generate texture coor- 
dinates for an arbitrary vertex, provided that a texture image 
in which the vertex is visible is already known. Additionally, 
such texture coordinates are available as a trivial by-product 
of the stereo reconstruction algorithm which performs the for- 
ward mapping of image pixels to 3D vertices: if such an al- 
gorithm maps a pixel (i, j )  of the (rectified) left image to 3D 
vertex v, and the (rectified) left image is N pixels wide and 
M pixels tall, then the normalized texture coordinates associ- 
ated with v are (s, t) = ( i / N ,  j / M ) .  

This definition of texture coordinate accuracy ensures that vi- 
sual features in the texture image are properly co-registered 
with the geometry of the terrain, which is important in SAP 
because the image is typically rich in details that scientists 
use to perform visual localization, select points of interest, 
and plan activities. As we describe below in Sections 4 and 6, 
we can also leverage the texture coordinates’ accuracy to im- 
plement picking, overlay graphics, and auxiliary science data 
co-registration. 

Scalability 

ViSTa supports data scalability by allowing the definition, 
within a single file, of terrains ranging in size from a frac- 
tion of the data from a single stereo pair to a full panorama 
of stereo pairs or more. Additionally, SAP supports loading 
multiple ViSTa files into the same interactive scene, as shown 
in Figure 2. 

The geometry in a ViSTa file is specified as an ordered set of 
Levels Of Detail (LOD) to support scalable visualization per- 
formance and resource usage. Each LOD has a header field 
which contains a distance threshold below which SAP will 
consider switching to the next higher LOD, if available. The 
exact semantics of this field are described below in Section 4. 

*Le. corrected for nonlinear optical distortion. 

The header field for each LOD identifies the highest-indexed 
vertex referenced by that LOD. This feature aids the imple- 
mentation of a simple utility for reducing the available num- 
ber of LOD (and hence the total size) of a ViSTa file. Such 
a utility will likely be useful for producing smaller datasets 
suitable for internet distribution for public outreach. 

Limitations 

In its current form, the ViSTa format does have certain limi- 
tations. It has been designed with only terrain data acquired 
from stereo vision hardware in mind. There are actually no 
serious restrictions at the bit-level that would make it diffi- 
cult to generalize ViSTa to terrain data acquired from many 
other sources. Some of the semantic requirements defined in 
the ViSTa specification ([ 11) only seem applicable to vision- 
acquired terrains and would likely have to be relaxed for ter- 
rains acquired through other means. 

As it is essentially a surface mesh format, ViSTa is appro- 
priate for visualization purposes. It may not be as directly 
useful for geometric interrogation and analysis applications, 
where occupancy-grid based representations are sometimes 
preferred. 

4. IMPLEMENTATION DETAILS 
We now turn to some of the details of SAP’S implementation, 
which illustrate how the design of the ViSTa terrain format 
can be leveraged to build a high-performance interactive vi- 
sualization system. 

The 3D visualization component in SAP was developed rel- 
atively quickly, with the attention of only one full-time soft- 
ware engineer for about 10 months. Of course, this would 
not have been possible without the collaborative support of 
the entire SAP development group (which itself has included 
only 3 full-time developers). 

Like the rest of SAP, the 3D visualization component is de- 
veloped entirely in the Java’””’ language on RedHatm Linux 
workstations. We use Sun Microsystems’ Java1‘”’’ 1.4 devel- 
opment environment, combined with the Sun Java 3D1‘”1 1.3.0 
(ported to Linux by the Blackdown project) package and the 
Sun Java Advanced Imaging (JAI) 1.1.1 package. 

Level Of Detail (LOD) Switching 

In SAP, the geometric LOD and texture resolution for each 
terrain wedge in the scene are possibly modified each time the 
viewpoint is moved during interactive navigation. In our cur- 
rent implementation these computations are based on the dis- 
tance from the viewpoint Center-of-Projection (COP) to the 
centroid of the bounding box of each terrain wedge (recall 
that this bounding box is present in the ViSTa file for the 
wedge, so computing these centroids is a constant-time op- 
eration per wedge). 

As shown in Figure 4, the ViSTa format wedges each define 



Figure 4. S A P  loads 3D terrain data from per-wedge ViSTa files which each contain a set of discrete Levels Of Detail (LOD). 
Shown here are the 6 LODs in a ViSTa file for one wedge, which range in size from about 100 triangles to about 100,OOO 
triangles. Data shown is from recent field test of the MER-like FIDO rover [SI. 

a set of discrete geometric LOD. Each LOD in the ViSTa file 
has a header which includes a field called the “LOD switch 
threshold”. This is the distance from viewpoint COP to the 
wedge centroid below which a more detailed LOD should be 
displayed. These threshold values are currently computed by 
the following heuristic algorithm (contributed by Jack Morri- 
son): 

For each LOD i: 
1.  Compute wi,  an estimate of the average “width” of a tri- 
angle in LOD i, according to the following formula 

(average terrain bounding box side) 
dnumber of triangles in LOD i (1) 

2. Compute t i ,  the LOD switch threshold for LOD i ,  accord- 
ing to the following formula, which makes t ,  the distance at 
which a triangle of “width” wi subtends a viewing angle of 

wi = 

1 0 .  
L .  

0.5wi 
ti = - 

tan 0.5O 
Or, use the approximation: 

S A P  loads texture image data separately from the terrain ge- 
ometry. Each wedge is textured by (a possibly processed ver- 
sion of) the left image of the stereo pair from which it was 
generated. The resolutions of the images actually sent to the 
rendering system are generally not the same as the original 
resolutions of the images; modern rendering systems require 
texture dimensions to be powers of 2. S A P  further downsam- 
ples the images by an additional power of 2 in each dimen- 
sion to produce a smaller image that still looks good, which 
works because the farther away the viewpoint is from a wedge 
the smaller the wedge appears. SAP currently uses a simple 
heuristic to select the appropriate resolution for the texture on 
each wedge: First, a bounding sphere is fit to the wedge ge- 
ometry (this can be done in constant time by operating only 
on the wedge bounding box). Next, the bounding sphere is 
conceptually projected from its location in the scene onto the 
current viewpoint canvas, resulting in a circle. The radius of 
the circle is then measured in pixels, and the largest available 
texture resolution whose maximum dimension is less than or 
equal to the measured radius is selected. 

S A P  aggressively attempts to use the least-detailed LOD and 
smallest texture resolution possible for all wedges according 
to the current viewpoint location. Furthermore, as we de- 

scribe next, LOD levels and textures that are not currently in 
use may be culled from memory as necessary. 

Multi-Level Caching 

SAP employs object caching in several places to enable high- 
speed loading of previously viewed data and to provide a cen- 
tral location for referencing large data objects to avoid mak- 
ing copies. We have developed a generic Javafm1 object cache 
which works with the Java Garbage Collector (GC) to en- 
sure that unreferenced objects are only flushed from the cache 
when memory is actually running low. As Figure 5 illustrates, 
we employ several instances of this object cache in our terrain 
system. 

Figure 5. We have developed a generic Javaf‘”’ object cache 
which works with the Java Garbage Collector (GC) to en- 
sure that unreferenced objects are only flushed from the cache 
when memory is actually running low. This figure shows the 
uses of instances of this object cache in our terrain system. 
An additional level of caching is achieved by memory map- 
ping the vertex array in the ViSTa file. 

As the figure shows, we cache the topology data for each 
LOD separately, a feature easily implemented using the dis- 
crete LODs available in the ViSTa file. We also implement 
an additional level of caching by memory-mapping the ver- 
tex array from the ViSTa file. This not only speeds loading 
by avoiding copies of this voluminous data structure, but it 
also transparently provides demand loading and caching of 
the data by taking advantage of the OS memory paging sys- 
tem. This works because the ViSTa specification encourages 
ViSTa file writers to order the vertex array so that vertices 
used in an LOD appear contiguously, so that those vertices 
that are used by higher (more detailed) LOD appear later in 
the array, and so that more detailed LOD share the vertices 
used by less-detailed LOD. Together, these ensure locality of 
reference for the vertex data, which makes page-caching use- 
ful. 



Asynchronous Data Loading 

In our implementation of SAP we take advantage of Java[”% 
threading system to load multiple parts of a data collection 
concurrently, while still allowing the user to interact with the 
scene. For very large datasets, e.g. the one described below 
in Section 5 ,  this has the great advantage that the user does 
not have to wait for the entire dataset to load before starting 
to investigate it. 

sults for the wedge corresponding to the image. 

We implement asynchronous data loading by submitting tasks 
to a instances of a generic thread pool. The thread pool is 
implemented as a constant number of worker threads and a 
queue to which tasks are submitted for execution. Tasks are 
pulled from the queue and assigned to worker threads as the 
threads become available. When loading 3D datasets we sub- 
mit each LOD fetch and each texture fetch as a separate task 
to a geometry loading thread pool and to a texture loading 
thread pool, respectively. 

Ray Intersection 

Ray intersection is another feature in SAP which is simpli- 
fied and enhanced by ViSTa features. This is the problem 
of taking an arbitrary spatial ray in the 3D scene and find- 
ing the ordered set of points that it intersects on the (out- 
ward facing) terrain surface. Ray intersection is currently 
used in SAP to implement interactive picking of points on 
the terrain and to produce accurate simulations of planned re- 
mote sensing operations. For example, if a scientist wants 
to aim a mast-mounted line-of-sight remote spectrometer in- 
strument on a specific rock, we simulate the activity by com- 
puting rays around the perimeter of the spectrometer’s (typi- 
cally very narrow) view frustum. We use our ray intersection 
system to find the nearest points where the rays intersect the 
previously sensed terrain (normally the area of interest, if it 
is on the terrain at all, has been previously imaged). Once 
we have the intersection points we can project them back to 
screen space and connect them to form a polygon which rep- 
resents the spot on the terrain that the spectrometer will likely 
measure. We call this simulation feature a “footprint,” and it 
provides valuable feedback to the scientists about the prob- 
able effects of their planed activities. As we mention below 
in Section 6, we have not finished implementing the footprint 
feature in our 3D views, but it has been completed in the 2D 
views (which still rely on ray intersection against the terrain 
models behind-the-scenes). 

Before we describe SAP’S ray intersection algorithm we need 
to describe how SAP implements interactive picking in 2D 
views, as the same functionality is leveraged by a part of the 
ray intersection algorithm. When the user clicks on a point in 
an image in a 2D view, we display the image pixel coordinates 
of the clicked point and also the spatial (z, y, z) coordinates 
of the point that were recovered from stereo correlation, if 
any. To produce this latter display, SAP performs a lookup in 
a pre-computed range map, which is normally an amortized 
constant-time accessible cache of all the stereo correlation re- 

We now present the ray intersection algorithm. Given a ray 
R = (patart, +direction) and a set 7 of terrains: 

1. for each terrain wedge w E 7: 
(a) if R intersects the bounding box for w specified in its 

ViSTa file then: 
i. Request the topology information for the lowest (Le. 

least-detailed) LOD of w from the centralized cache de- 
scribed.in the previous section. 

ii. Using the lowest-LOD topology information and the 
memory-mapped pool of vertices from the ViSTa file for w, 
iterate over all the triangles in the lowest LOD of w, checking 
the intersection of R with each. Add any front-face intersec- 
tions found to the result list. Compute both the spatial and 
normalized texture coordinates for each intersection point by 
interpolating the vertex data for the intersected triangle. 
2. Compute the the texture image pixel coordinates for each 
intersection point by scaling the normalized texture coordi- 
nates to the dimensions of the corresponding texture image. 
3. Sort the result list in increasing order by distance from 
Pstart * 

The result of this algorithm is an ordered list containing in- 
formation about each intersection point. At this stage the 
normalized texture coordinates and the texture image pixel 
coordinates have already been computed. Spatial intersection 
coordinates are also available, but they are computed only 
against lowest-resolution LOD of the terrain surface. Some- 
times more accurate spatial coordinates are not required, but 
if necessary, we can find high-resolution spatial coordinates 
quickly by performing a range map lookup using the texture 
image pixel coordinates in the same way as we do for a pick 
in a 2D view. If this lookup fails (Le. because stereo cor- 
relation failed for the pixel in question) then this is a strong 
suggestion to SAP that the spatial coordinates of the point are 
uncertain and should not be trusted. 

The ray intersection algorithm leverages ViSTa features in 
several ways. First, it uses the terrain bounding box to per- 
form a quick intersection check. Second, it only iterates over 
the lowest LOD of a terrain, which can have 3 or more orders 
of magnitude fewer triangles than the highest LOD (c.f. Fig- 
ure 4). Third, it uses the guaranteed semantics and accuracy 
of the texture coordinates to compute the texture image pixel 
coordinates at the intersection point, which SAP can use di- 
rectly in some cases, and from which SAP can quickly look 
up a high-resolution spatial intersection point when neces- 
sary. 

5 .  TEST RESULTS 
SAP was recently tested aggressively in an intense 10-day 
field test of the MER-like FIDO rover ( [ 5 ] ) ,  in which the 
rover was remotely operated in a Southwest desert location. 
Most of the data shown in previous figures was actually ac- 
quired, analyzed, and used for science operations planning 



during this test. The operations center for this test, shown in 
Figure 6 was staged at JPL. 

allow the scientists to see a representation of spectral mea- 
surement data directly on the terrain feature from which the 
data was acquired. This feature is described in detail in [ 111. 

Figure 6. SAP was recently tested aggressively in an in- 
tense 10-day field test of the MER-like FIDO rover ( [ 5 ] ) ,  in 
which the rover was remotely operated in a Southwest desert 
location. The operations center for this test, shown here, was 
staged at JPL. 

The 3D visualization capabilities of SAP were used exten- 
sively in this field test, which included some relatively large 
datasets. The largest single 3D dataset acquired during the 
test was a panorama taken from the initial rover location. This 
dataset consists of 265 terrain wedges, each with an asso- 
ciated 640x480~24 texture image. Aggregately, the highest 
LOD and texture resolution of the wedges in this set con- 
tained over 14million mangles (17 million vertices) and over 
232MB of texture data. Running under RedHat@ Linux 7.2 
on PC workstations with dual Intel@ Xeoniml 1.7GHz proces- 
sors, 1GB memory, NVIDIA@ Quadroi“l 4 750 XGL graph- 
ics systems, and high-speed IDE disks, SAP reliably loaded 
this dataset and allowed interactive navigation at about 20 
frames per second, even under high machine load. Load times 
(when data is not already in the OS disk cache) are about 20s 
until first interactive geometry is available, about 35s until 
all geometry is loaded, and about 53s until all textures are 
loaded. 

6. FUTURE WORK 
Even though SAP was comprehensively tested in the recent 
FIDO field test, it is not yet complete. Time- and budget- 
permitting, we intend to consider several substantial improve- 
ments to the 3D visualization component. 

One improvement we may add is the ability to display sim- 
ulated camera activity footprints on the 3D terrain surface. 
A footprint in this usage is the outline of the intersection of 
a simulated camera view frustum with the terrain surface, 
which gives scientists a sense of the image that will result 
from a planned camera activity. We already generate foot- 
prints in the SAP 2D views, as shown in the upper right half 
of Figure 1. 

Another addition we are planning is the ability to overlay aux- 
iliary 2D datasets onto the textures in a 3D view. This could 

We predict that the well-defined semantics of texture coor- 
dinates in ViSTa will aid us in implementing each of these 
features. 

7. CONCLUSIONS 
We have described the design and implementation of the 3D 
visualization system in SAP, the primary science data analysis 
and science activity planning tool for the Mars Exploration 
Rover mission, currently under development. 

A major challenge that we faced in the development of SAP 
was the definition of the format that it would use to represent 
3D terrain data. After analyzing many of the popular formats 
currently in use, we decided that a new format was needed to 
suit our requirements. To this end we developed the Visible 
Scalable Terrain format, or ViSTa. ViSTa is a full 3D format 
(i.e. not just a 2.5D elevation map). ViSTa includes bounding 
boxes, texture coordinates with well-specified semantics to 
allow the accurate overlay of 2D data onto the 3D terrain sur- 
face, and it also includes Levels of Detail to enable scalable 
performance and resource usage. 

The design of the ViSTa format has enabled us to build some 
advanced features into SAP, including LOD switching, multi- 
level caching, asynchronous data loading, and optimized ray 
intersection. Aggregately these features give SAP the capac- 
ity it needs to load and manipulate large datasets on PC-class 
workstations, and to this end we gave concrete results for 
SAP’S measured performance on a specified machine config- 
uration during a recent mission-like field test. 
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