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Abstract - The X2000 Advanced Avionics project at JPL 
was created to provide the core spacecraft avionics for use 
on multiple future missions. The avionics suite includes a 
radiation hardened PPC 750 as well as various 110 and mass 
storage devices. 

A key factor in modem computer architectures is the fact 
that the CPU operates much faster than does the main 
memory. This has necessitated caching techniques to obtain 
full performance fiom the processor, and has also made 
software performance highly dependent on cache activity. 

This dependency on cache activity makes it more difficult to 
predict whether a given application will perform as expected 
on a given platform. Simple benchmarks are of limited use 
since the cache behavior is generally predictable and does 
not accurately reflect the behavior of an application running 
in a more complex environment. 

A “X2000 Advanced Avionics Characterization Study” was 
performed in which a set of tests were run, beginning with 
single tests of both CPU intensive and I/O intensive 
activities. These tests were then run in combination to build 
up to a very active complex computing environment in order 
to expose performance interactions. This should then 
provide a wide enough range of examples to allow a 
potential user to more accurately estimate the expected 
performance of their application. Measurements were 
collected on a per-task basis for the actual execution rate 
and cache performance by using the Power PC 750 
performance monitoring registers. 

The characterization study has shown that adjustments in an 
application’s data accesses can easily create a performance 
difference of three or more times in actual applications. In 
general, by iterating over a small portion of a data set rather 
than its entirety, execution can remain within cache thereby 
producing a performance increase. Additionally, the 
approaches used in performing I/O can make a major 
performance difference. 

As system activity increases differences are seen in a 
application’s cache performance, but do not appear to be a 
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major factor in real applications. Contention for the PCI bus 
can also be a performance issue to consider. 
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1 INTRODUCTION 

As new spacecraft processors become available, their 
dependency on memory and cache interaction makes it more 
difficult to predict the actual runtime performance that they 
will achieve. A “X2000 Advanced Avionics 
Characterization Study” was performed to exercise a variety 
of applications on the BAE Systems RAD750 Power PC 
processor and other mass memory and VO devices 
developed as part of the JPL X2000 project. This study 
characterizes their performance and provides measured 
results for a wide variety of operational scenarios. This 
paper will highlight the results of this study and attempt to 
provide useful information to those that need to do system 
engineering, design, and implementation of real time 
systems on new processor architectures. 

The X2000 hardware that resides in the main chassis are 
Compact PCI (CPCI) 3U form factor. As discussed below, 
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certain components do not reside in the main chassis but 
instead connect over the 12C bus. 

The X2000 hardware suite consists of the following 
components: 

0 SFC (Spacecraft Flight Computer): Developed and 
manufactured by BAE Systems, the SFC is a 
radiation and SEU hardened, fully PPC compliant 
processor. The CPU is a Power PC 750 processor 
running at 132 MHz with onboard 128 MBytes of 
RAM and the PowerPCI PCI host bridge. The host 
bridge is a new development by BAE, based on the 
Motorola MPC 106 host bridge interface. The 
PowerPCI contains the memory controller, PCI 
interface and various ancillary components. The 
name BAE has given to this board as a product is 
“RAD7 50”. 

0 NVM (Non-Volatile Memory): Developed and 
manufactured by SEAKR Engineering, the NVM 
board is the mass storage component consisting of 
two 128MByte banks of non-volatile storage (flash 
memory) on each card for a total of 256MBytes. 

0 DIO (Digital YO): Developed by JPL, the DIO is 
an ASIC providing an IEEE 1394 (Firewire) 
interface, two 12C interfaces, a high-speed UART 
interface, a watchdog timer capable of resetting the 
CPU and a set of count-down timers. At this 
writing the DIO ASIC has not been fabricated and 
all testing has been done with an FPGA version. 
Unfortunately the FPGA version is limited to half 
speed PCI (16.5 MHz) and quarter speed 1394 (25 
Mbps) and as such impacts the performance 
numbers presented. Comments will be made 
where appropriate to indicate expected behavior 
with fully capable DIO components. 

0 SI0  (System VO): The SI0  is a card containing 
two DIOs and the associated interface circuitry. 

0 SIA (System Interface Assembly): Developed by 
P L ,  the SIA is designed to be the instrument and 
telecom interface. It is a card that provides 4 high- 
speed synchronous serial instrument interfaces, a 
single MIL-STD-1553 interface and a synchronous 
serial telecom interface. 

0 PSS (Power Switch Slice): The PSS is not a CPCI 
card, but rather is coupled to the system via 
redundant 12C interfaces. Developed by P L ,  the 
PSS contains 16 switches and a sophisticated 
commanding capability. It has been designed to 
not only control normal spacecraft loads but also 
for pyro firings and valve drives. 

converter providing up to 32 channels of input and 
a single 12C interface to the rest of the system. It 
can be used for either temperature or voltage 
measurements depending on configuration. 

The SFC (RAD750), NVM, SIA and SI0 are prototype 
boards. The PSS and TRIO used for this testing are pre- 
prototype development implementations. 

Additionally, there is a PCS (Power Control Slice) under 
development at this writing that was not available for 
testing. 

3 PROCESSOR PERFORMANCE FACTORS 

CPU performance and the number of instructions that are 
executed can vary widely depending on the specifics of 
software execution. The theoretical maximum execution 
speed of the PPC750 running at 133MHz is approximately 
240 MIPS. Other factors as discussed below can then 
degrade this value. 

Previously processors have been primarily rated in MIPS 
(Million Instructions Per Second ) and most applications 
were serviced at the advertised instruction execution rate. 
One of the major messages of this document is that in new 
architectures MIPS becomes extremely variable depending 
on the processor’s interaction with external entities such as 
RAM and VO. In this document, the term “MIPS” refers to 
the execution rate based on actual RAD750 instruction 
counts, and not to “marketing” ratings for the processor. 

Latencies due to memory throughput and PCI accesses are 
discussed below. It is important to understand that these 
latencies apply to the CPU. The memory accesses in 
question cause a delay in completing the current instruction, 
leaving the CPU blocked. This is then observed as a 
reduction in the instruction execution rate, i.e. lower MIPS. 

3. I Cache Performance 

The first performance factor stems fiom the relationship of 
CPU speed to memory speed. In recent times memory 
speeds have not come close to keeping up with processor 
speeds. With the processor running substantially faster than 
the memory it becomes difficult to achieve the full potential 
performance of the CPU. This is what led to the inclusion 
of high-speed cache in commercial CPUs in the 199Os, and 
why commercial enterprises are currently working hard on 
faster memory architectures such as RAMBUS and DDR. 

Processors may have multiple levels of cache; L1 for the 
cache first accessed, L2 for the next level and so on. The 
RAD750 contains only L1 cache due to the unavailability of 
a space-qualified part for L2 cache. 

TRIO (Temperature Remote VO): Developed by 
APL, the TRIO is primarily an analog to digital 
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When the CPU references a memory address, the requested 
data may be in cache. In this case no RAM access is 
generated and the access is accomplished in a single CPU 
cycle. If the data are not in cache then RAM must be 
accessed. In hardware the RAM is arranged into 4K pages. 
When a RAM access is done to a new page, there is a 2 
cycle overhead to “open” the page. If the RAM access is to 
the same memory page as the previous RAM access the 
access does not require the additional 2 cycles. 

On the RAD750, the memory is accessed by a 64-bit bus, 
and has timing of 12-1-1-1 for a fetch from a new RAM 
page, or 10-1-1-1 for a fetch from an already open RAM 
page (the more common case). This means that the first 64 
bits of a fetch requires ten or twelve 30 nanosecond bus 
cycles and subsequent words that are part of the same fetch 
require one cycle each. A memory fetch may be up to 4 64 
bit values (32 bytes). 

If L1 cache is enabled, then all memory fetches are done in 
32-byte increments or in groups of 4 64-bit fetches. Thus 
from an open page, it requires 13 bus cycles or 39011s to 
fetch a 32-byte cache line. At the theoretical top speed of 
240 MIPS, the CPU could have executed 94 instructions in 
this time. The CPU needs to hang waiting for the 
instruction or data fetch, effectively resulting in the 
execution one instruction instead of 94. Also, it is 
sometimes necessary to write back modified data from a 
cache line before fetching the new data (called a cast-out, 
discussed below). Hence, memory throughput and cache hit 
rate are critical to CPU performance. 

It can be seen from the bus timings above that it is 
extremely important to have the L1 cache enabled. If the 
cache is not enabled, all memory fetches are done as single 
64-bit operations meaning the 10 or 12 cycle penalty is paid 
for every fetch. At 10 cycles or 300 nanoseconds per 64-bit 
fetch, this yields a best-case rate of about 6.7 MIPS, not 
accounting for data loadstore. 

For a given a cache hit rate it is possible to compute an 
instruction execution rate that will be close to experimental 
results. The PPC750 has separate 32 Kbyte caches for 
instructions and for data. Therefore, in order to compute a 
cache hit rate it is necessary to aggregate the instruction 
cache and data cache miss rates. In the tests we have run a 
reasonable proportion for memory accesses is 70% 
instructions and 30% data for a compute-bound task as an 
overall average. Therefore the overall cache miss rate can 
be estimated as: 

The other cache-related factor that can influence cache 
performance is data cast-outs. On the SFC the L1 cache is 
normally run in write-back mode in which modified data in 
the data cache are not written to memory until the cache line 
is needed for different data. A “cast-out” is said to occur 
when it is necessary to save modified data before reusing a 
cache line. In this situation the processor must wait while 
the modified data are saved before it can fetch the new data. 
A cache line that contains modified data that have not been 
written to RAM is said to be “duty”. 

The timing for writes from cache to RAM is always 5-1-1-1, 
i.e. 8 cycles to write a cache line. This is 240 nanoseconds 
or about 58 instructions. 

Below is a graph giving the computed instruction rate for 
various cache miss rates. This graph is the result of 
analysis, not measurement but it agrees fairly well with test 
data. 

rate=MIPS/(c +(ir * ml +dr  * m2) * pl  + (m2 * r2 * p2 * 
dr)) 

rate: The actual rate of instruction execution 

MIPS: 

C: 

ml : 
m2: 
ir: 
dr: 
pl:  

r2 : 

p2: 

Advertised (theoretical maximum) CPU 
MIPS Rate (240). 
Instruction load rate out of L1 cache. 
Assuming 1.0. 
L1 I-cache miss rate 
L1 D-cache miss rate 
Fraction of accesses that are instructions 
Fraction of accesses that are data 
Instruction penalty to load L1 line from 
RAM (94). 
ratio of dirty cache lines (those that must 
be written before reloading new data into 
the cache line). 
Instruction penalty to write L1 line to 
RAM (58). 

The above yields a multi-dimensional space controlled by 
ml,  m2, ir, dr and r2 which is inconvenient to use for 
estimation purposes. Generally one would like to see a 
graph giving cache rates versus instruction rates. In the plot 
below an aggregate miss rate is plotted as the X-axis and 
MIPS is the Y-axis. For purposes of computing the cast-out 
penalty only a D cache miss rate of 2.5% has been used as 
well as a data access fraction of 40% has been used. Plots 
for cast-out rates of 0%, 50% and 100% (r2) are included. 
The formula then becomes: 

Miss rate = (.7 * I-cache miss) + (.3 * D-cache miss) 
rate = MIPS / (1.0 + m * 94 + (.025 * r2 * 58 * .4)) 

As one might expect, this can vary substantially based on 
the software algorithm and instruction mix being executed. 
The VO intensive operations tend to be more like 55% 
instructions and 45 % data. 

The D-cache miss rate gives results that are a little 
pessimistic for low aggregate miss percentage and perhaps 
optimistic for high miss percentage, but is a good estimate 
for most applications. The tests run show a cast-out rate of 
about 85% for I/O tasks and 40% to 80% for compute- 
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Cache miss rate vs instruction rate for various CPU 
speeds 
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fact they are comparable to commercially available PCI 
bridges. 

For both reads and writes the bridge is capable of a 
continuous burst at one word per cycle after the transaction 
is initiated, at which point the speed is determined by the 
speed of the target PCI device. 

It can be seen that, at a 3% cache miss rate, cutting the CPU 
speed in half makes only an 18% difference in instruction 
execution rate. The benefit of higher CPU rates is seen 
primarily for compute-intensive tasks. The PCI speed does 
not change with CPU speed so VO bound tasks will also be 
less influenced by CPU speed. 

Note: One might expect the response to be flat if the 
processor was running at the same rate as the memory 
(33MHz). This does not occur due to the 10-1-1-1 memory 
fetch timing. 

3.3 PCII/O 

The next factor that can have a substantial impact on CPU 
performance is I/O to the PCI bus. The PCI runs at 33MHz, 
which is fast for an I/O bus. But like the memory bus there 
is overhead in initiating a new transaction. Unlike the 
memory bus the PCI is only 32 bits wide, hence a single 
PCI transaction transfers 4 bytes. 

The overhead for initiating a PCI write is 5 PCI cycles and 
the overhead for initiating a PCI read is 26 PCI cycles, or 
780 nanoseconds. These may seem to be high values but in 

5 

PCI reads are completely synchronous for the CPU. That is, 
the CPU must wait for completion before continuing. 
Therefore any PCI read will cost a minimum of 780 
nanoseconds with possibly some extension if the PCI device 
is not able to respond on the first cycle. The only way to 
generate a burst of more than one word for a CPU read is to 
use the CPU's floating point registers. This will generate a 
two-word burst and can nearly double the throughput. 

These effects are not unique to the RAD750 implementation 
but apply equally to commercial implementations. 

PCI writes are more efficient, both because of the lower 
initiation time and because some pipelining can occur. 
When floating-point registers are used, bursts of up to four 
words have been observed on the PCI bus. 



The test results show that the instruction execution rate may 
be less than the expected rate due to cache effects, with this 
difference explained primarily by PCI VO latencies. 

A PCI read of a single 32-bit value requires a minimum of 
27 PCI cycles (810 nanoseconds). If floating-point registers 
are used, throughput is almost doubled since 64 bits can be 
read in a minimum of 28 cycles. In reality the target may 
introduce one or two memory wait-states, but the results 
observed indicate that throughput does in fact nearly double. 
A similar principle applies to PCI writes. 

The initiation time is the same for PCI transactions of any 
length. In applications where direct memory access (DMA) 
can be used for PCI VO, a major improvement in 
performance is achieved. This is not only because the CPU 
load is reduced but also because data may be transferred by 
PCI burst transactions at a rate very close to the theoretical 
limit. 

3.4 PPC Multiple load / store instructions 

Testing was performed to determine if PPC multiple 
loadstore instructions would generate PCI burst 
transactions and thereby improve throughput. No burst 
transactions were generated and the performance was 
equivalent to doing the I/O using single 32-bit instructions. 

4 CONCLUSIONS 

The full results of the “X2000 Advanced Avionics 
Characterization Study” (JPL Document D-24447) comprise 
a report of approximately 140 pages and it is not possible to 
fully present the information contained to support the 
conclusions given here. 

While a processor will indeed run at the maximum 
advertised rate under ideal conditions, it to be expected that 
a real-world application will perform less well. For 
example it has been shown here that the performance varies 
substantially depending on how the software interacts with 
the cache. 

Flight software tends to require a high degree of 
determinism, or at least guaranteed minimum performance. 
Given the variations in performance due to cache activity, 
this may become somewhat difficult to achieve. This study 
shows that algorithm design and associated cache activity 
makes a much bigger difference in software performance 
than other factors such as system load. While there may be 
more performance jitter than in older environments, 
predicting its extent should still be well within manageable 
bounds. 

The ICER image compression benchmark and the DS1 
image compression task clearly show the benefit of 
designing algorithms that iterate piecewise over small 
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portions of the data rather than over the entire data set at 
once. In iterating over an entire image the ICER benchmark 
achieved a measured performance of -60 MIPS and it 
achieved roughly twice that rate by iterating over small 
image sections. In a performance-critical application 
substantial benefit can be achieved by designing, when 
possible, for small locality of reference, completing the 
processing for a small section of code or data before moving 
on to further processing. By minimizing I/O and doing 
larger I/O operations (DMA, floating point register 
transfers), substantial gains are possible. 

In the UART tests a “slipstream” effect was observed in 
which processing for the second UART in each cycle 
executes about 20% faster than the first due to the first 
interrupt having brought the code into cache. Performance 
is enhanced by executing an algorithm as much as possible 
for typically short time periods before proceeding on. This 
benefit is only achieved if an algorithm is small enough to 
fit mostly or entirely in the cache. 

The I/O bound case is simpler to analyze. Given the PCI 
bus rates (Section Error! Reference source not found.), 
determining the amount of time required by an operation is 
fairly straightforward. In this case PCI throughput is likely 
to be the biggest performance factor. 

Optimizing RAD750 performance should not be very 
different than for other processors, except for cache 
performance being an added and important factor to 
consider. 

4.1 Application performance versus complexity of 
environment 

As discussed earlier, software performance is largely 
dependent on cache performance. Cache performance in 
turn is dependent on the range of different memory locations 
being accessed over time. 

The effectiveness of cache is based on the heuristic that 
memory accesses, either for code or for data, tend to be 
localized over short time intervals and that memory 
locations tend to be referenced multiple times over short 
time periods. At the CPU level there is no distinction 
between operating system tasks or an application, there is 
just a series of instructions executing as a stream. 

As a result, a given application may have a different 
performance when run by itself, as compared to being run as 
part of a system with interrupts and other tasks which 
intervene and cause flushing of the cache. 

Certain restrictions made it impossible to run exactly the 
same tests in all scenarios, e.g. the requirement for reducing 
PCI speed in tests involving the 1394 bus. Also, there is a 
certain amount of noise present in the results due to 
interrupts fi-om network activity that was necessarily present 



during the testing. Therefore, making comparisons between 
specific tests is difficult. 

Interrupts I sec 
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The NVM write tests show a consistently small reduction in 

data rate increases, however at the same time the difference 
in MIPS is small. On the other hand the NVM read tests do 

the D-cache miss rate for the interrupt service routine as the 

not exhibit a similar effect. 
I - 0.01 I - 0.02 

D -2.30 D -2.44 D -2.52 

The Star ID test showed a fairly consistent performance and The 1394 bus isochronous loopback tests do indicate an 
should not be influenced by the PCI speed. This test interaction between the performance values for the interrupt 
showed a 4.6% reduction in the MIPS rate when run as Part service routine (ISR), as shown in the following table. As 
of the full-rate combination test as compared to running the number of interrupts per second increases, the ISR MIPS 
standalone. A small but consistent reduction in performance increase by about 26%, while the I-cache miss rate 
is observed as system load increases. In the table “I” is decreases. 
instruction cache miss rate and “D” is data cache miss rate. 
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There are no other results that indicate a major impact on 
the performance of applications in a realistic scenario based 
on interrupts or other system activity. 

In the 1394 tests, most of the processing occurred in the ISR 
and there is not a lot of system activity (primarily network) 
during the tests that would flush the ISR out of cache. This 
effect is not seen as much in a more active system. If performance of an application is measured on an 

otherwise completely inactive system there will degradation 
due to cache interaction in the range of 10% to 15% as 
compared to an active system. Most of this degradation will 
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occur quickly as the system becomes more active. The 
performance interactions are observed to be greater for 
applications that exhibit higher cache miss rates. This 
would be expected since a low cache miss- rate 
application will do more processing between interrupts. 
Hence the influence of interruptions on cache performance 
will be a smaller percent. 

While tuning a system to reduce the context switches and 
interrupt activity may be done, the results here indicate that 
designing algorithms for locality of access will generally be 
more productive. If code design and implementation cannot 
be modified, overall it is desirable to arrange the system 
activity to allow applications to run as long as possible 
without interruption. 

4.2 PCI bus contention 

Contention is another factor that reduces performance as 
system activity increases, in particular contention for the 
PCI bus. This effect can be seen most clearly in the NVM 
read tests when running standalone as compared to running 
in combination with other components. The NVM high rate 
tests experienced approximately a 30% decrease in 
performance when run with the 1394 bus contending for the 
PCI. Less than half of this degradation can be explained by 
the difference in cache miss. The remainder (-20%) is the 
result of the contention with the 1394 bus in accessing the 
PCI bus. 

For any application that uses program VO, this contention 
will be seen as an increase in CPU time consumed since the 
CPU must wait for the operation to complete. For an 
application that uses DMA to transfer data this contention 
will not be reflected in the CPU time but will show in the 
maximum data rates achievable. 

valid for the RAD750 architecture since the MIPS achieved 
varies widely depending on cache activity. 

MIPS became an allocation unit because it was a convenient 
to use a single number. This MIPS rating was for a 
particular instruction mix, which was not always well 
understood or considered. For marketing reasons, it would 
invariably represent “best case”. But even in older non- 
cached architectures it was not a particularly useful 
measure. The performance of these systems was also 
affected by the extent of VO processing. Allocating MIPS 
to applications usually did not take into account the 
instruction mix, e.g. the different execution times of integer 
and floating-point operations. 

Given these failings, the percentage of the processor time 
taken by a given task is a more meaningful allocation 
measure. This is what was actually being allocated before, 
in which MIPS allocations needed to be scaled based on 
task characteristics such as floating point usage and VO 
activity. 

The performance data presented in this document is 
intended as an aid in predicting how a specific type of 
application will perform on the RAD750 architecture. 
Unfortunately, scaling performance estimates for processors 
that follow will be rather approximate. It will still be 
necessary to run tests to characterize new platforms since 
performance does not typically scale equally for all types of 
operations between platforms. For instance, it is likely to be 
true for some time that memory subsystems’ performance 
will vary widely, a factor easily overlooked in a 
manufacturer’s specifications. 

It is hoped that this document will provide information 
sufficient to aid in predicting the performance of 
applications when hosted on the RAD750 / X2000 platform, 
and form the basis for comparisons with other platforms. 

4.3 MIPS and processor percent 
REFERENCES 

It has been common in designing systems to allocate to 
software applications (such as attitude control, science, etc.) 
portions of the processing capability based on the MIPS 
rating of the processor. It is clear that this approach is not 

[ 13 Len Day, et al, JPL Internal Document D-24447, 
“X2000 Advanced Avionics Project Performance 
Characterization Study” 
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