
X2000 ADVANCED AVIONICS CHARACTERIZATION
STUDY’

Len Day - len.day@,ipl.nasa.gov - - 81 8-354-4308
Don Meyer, Nick Nicolich, Rob Steele, Igor Uchenik, Ken Vines

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, Pasadena, CA 91 109

Abstract - The X2000 Advanced Avionics project at JPL
was created to provide the core spacecraft avionics for use
on multiple future missions. The avionics suite includes a
radiation hardened PPC 750 as well as various 110 and mass
storage devices.

A key factor in modem computer architectures is the fact
that the CPU operates much faster than does the main
memory. This has necessitated caching techniques to obtain
full performance fiom the processor, and has also made
software performance highly dependent on cache activity.

This dependency on cache activity makes it more difficult to
predict whether a given application will perform as expected
on a given platform. Simple benchmarks are of limited use
since the cache behavior is generally predictable and does
not accurately reflect the behavior of an application running
in a more complex environment.

A “X2000 Advanced Avionics Characterization Study” was
performed in which a set of tests were run, beginning with
single tests of both CPU intensive and I/O intensive
activities. These tests were then run in combination to build
up to a very active complex computing environment in order
to expose performance interactions. This should then
provide a wide enough range of examples to allow a
potential user to more accurately estimate the expected
performance of their application. Measurements were
collected on a per-task basis for the actual execution rate
and cache performance by using the Power PC 750
performance monitoring registers.

The characterization study has shown that adjustments in an
application’s data accesses can easily create a performance
difference of three or more times in actual applications. In
general, by iterating over a small portion of a data set rather
than its entirety, execution can remain within cache thereby
producing a performance increase. Additionally, the
approaches used in performing I/O can make a major
performance difference.

As system activity increases differences are seen in a
application’s cache performance, but do not appear to be a

0-7803-7651-X/03/$17.00 0 2003 IEEE

major factor in real applications. Contention for the PCI bus
can also be a performance issue to consider.

TABLE OF CONTENTS

INTRODUCTION. ... 1

x2000 OVERVIEW .. 1

PROCESSOR PERFORMANCE FACTORS................. 2

CONCLUSIONS ... 6

REFERENCES... 8

1 INTRODUCTION

As new spacecraft processors become available, their
dependency on memory and cache interaction makes it more
difficult to predict the actual runtime performance that they
will achieve. A “X2000 Advanced Avionics
Characterization Study” was performed to exercise a variety
of applications on the BAE Systems RAD750 Power PC
processor and other mass memory and VO devices
developed as part of the JPL X2000 project. This study
characterizes their performance and provides measured
results for a wide variety of operational scenarios. This
paper will highlight the results of this study and attempt to
provide useful information to those that need to do system
engineering, design, and implementation of real time
systems on new processor architectures.

The X2000 hardware that resides in the main chassis are
Compact PCI (CPCI) 3U form factor. As discussed below,

1

mailto:len.day@,ipl.nasa.gov

certain components do not reside in the main chassis but
instead connect over the 12C bus.

The X2000 hardware suite consists of the following
components:

0 SFC (Spacecraft Flight Computer): Developed and
manufactured by BAE Systems, the SFC is a
radiation and SEU hardened, fully PPC compliant
processor. The CPU is a Power PC 750 processor
running at 132 MHz with onboard 128 MBytes of
RAM and the PowerPCI PCI host bridge. The host
bridge is a new development by BAE, based on the
Motorola MPC 106 host bridge interface. The
PowerPCI contains the memory controller, PCI
interface and various ancillary components. The
name BAE has given to this board as a product is
“RAD7 50”.

0 NVM (Non-Volatile Memory): Developed and
manufactured by SEAKR Engineering, the NVM
board is the mass storage component consisting of
two 128MByte banks of non-volatile storage (flash
memory) on each card for a total of 256MBytes.

0 DIO (Digital YO): Developed by JPL, the DIO is
an ASIC providing an IEEE 1394 (Firewire)
interface, two 12C interfaces, a high-speed UART
interface, a watchdog timer capable of resetting the
CPU and a set of count-down timers. At this
writing the DIO ASIC has not been fabricated and
all testing has been done with an FPGA version.
Unfortunately the FPGA version is limited to half
speed PCI (16.5 MHz) and quarter speed 1394 (25
Mbps) and as such impacts the performance
numbers presented. Comments will be made
where appropriate to indicate expected behavior
with fully capable DIO components.

0 SI0 (System VO): The SI0 is a card containing
two DIOs and the associated interface circuitry.

0 SIA (System Interface Assembly): Developed by
P L , the SIA is designed to be the instrument and
telecom interface. It is a card that provides 4 high-
speed synchronous serial instrument interfaces, a
single MIL-STD-1553 interface and a synchronous
serial telecom interface.

0 PSS (Power Switch Slice): The PSS is not a CPCI
card, but rather is coupled to the system via
redundant 12C interfaces. Developed by P L , the
PSS contains 16 switches and a sophisticated
commanding capability. It has been designed to
not only control normal spacecraft loads but also
for pyro firings and valve drives.

converter providing up to 32 channels of input and
a single 12C interface to the rest of the system. It
can be used for either temperature or voltage
measurements depending on configuration.

The SFC (RAD750), NVM, SIA and SI0 are prototype
boards. The PSS and TRIO used for this testing are pre-
prototype development implementations.

Additionally, there is a PCS (Power Control Slice) under
development at this writing that was not available for
testing.

3 PROCESSOR PERFORMANCE FACTORS

CPU performance and the number of instructions that are
executed can vary widely depending on the specifics of
software execution. The theoretical maximum execution
speed of the PPC750 running at 133MHz is approximately
240 MIPS. Other factors as discussed below can then
degrade this value.

Previously processors have been primarily rated in MIPS
(Million Instructions Per Second) and most applications
were serviced at the advertised instruction execution rate.
One of the major messages of this document is that in new
architectures MIPS becomes extremely variable depending
on the processor’s interaction with external entities such as
RAM and VO. In this document, the term “MIPS” refers to
the execution rate based on actual RAD750 instruction
counts, and not to “marketing” ratings for the processor.

Latencies due to memory throughput and PCI accesses are
discussed below. It is important to understand that these
latencies apply to the CPU. The memory accesses in
question cause a delay in completing the current instruction,
leaving the CPU blocked. This is then observed as a
reduction in the instruction execution rate, i.e. lower MIPS.

3. I Cache Performance

The first performance factor stems fiom the relationship of
CPU speed to memory speed. In recent times memory
speeds have not come close to keeping up with processor
speeds. With the processor running substantially faster than
the memory it becomes difficult to achieve the full potential
performance of the CPU. This is what led to the inclusion
of high-speed cache in commercial CPUs in the 199Os, and
why commercial enterprises are currently working hard on
faster memory architectures such as RAMBUS and DDR.

Processors may have multiple levels of cache; L1 for the
cache first accessed, L2 for the next level and so on. The
RAD750 contains only L1 cache due to the unavailability of
a space-qualified part for L2 cache.

TRIO (Temperature Remote VO): Developed by
APL, the TRIO is primarily an analog to digital

2

When the CPU references a memory address, the requested
data may be in cache. In this case no RAM access is
generated and the access is accomplished in a single CPU
cycle. If the data are not in cache then RAM must be
accessed. In hardware the RAM is arranged into 4K pages.
When a RAM access is done to a new page, there is a 2
cycle overhead to “open” the page. If the RAM access is to
the same memory page as the previous RAM access the
access does not require the additional 2 cycles.

On the RAD750, the memory is accessed by a 64-bit bus,
and has timing of 12-1-1-1 for a fetch from a new RAM
page, or 10-1-1-1 for a fetch from an already open RAM
page (the more common case). This means that the first 64
bits of a fetch requires ten or twelve 30 nanosecond bus
cycles and subsequent words that are part of the same fetch
require one cycle each. A memory fetch may be up to 4 64
bit values (32 bytes).

If L1 cache is enabled, then all memory fetches are done in
32-byte increments or in groups of 4 64-bit fetches. Thus
from an open page, it requires 13 bus cycles or 39011s to
fetch a 32-byte cache line. At the theoretical top speed of
240 MIPS, the CPU could have executed 94 instructions in
this time. The CPU needs to hang waiting for the
instruction or data fetch, effectively resulting in the
execution one instruction instead of 94. Also, it is
sometimes necessary to write back modified data from a
cache line before fetching the new data (called a cast-out,
discussed below). Hence, memory throughput and cache hit
rate are critical to CPU performance.

It can be seen from the bus timings above that it is
extremely important to have the L1 cache enabled. If the
cache is not enabled, all memory fetches are done as single
64-bit operations meaning the 10 or 12 cycle penalty is paid
for every fetch. At 10 cycles or 300 nanoseconds per 64-bit
fetch, this yields a best-case rate of about 6.7 MIPS, not
accounting for data loadstore.

For a given a cache hit rate it is possible to compute an
instruction execution rate that will be close to experimental
results. The PPC750 has separate 32 Kbyte caches for
instructions and for data. Therefore, in order to compute a
cache hit rate it is necessary to aggregate the instruction
cache and data cache miss rates. In the tests we have run a
reasonable proportion for memory accesses is 70%
instructions and 30% data for a compute-bound task as an
overall average. Therefore the overall cache miss rate can
be estimated as:

The other cache-related factor that can influence cache
performance is data cast-outs. On the SFC the L1 cache is
normally run in write-back mode in which modified data in
the data cache are not written to memory until the cache line
is needed for different data. A “cast-out” is said to occur
when it is necessary to save modified data before reusing a
cache line. In this situation the processor must wait while
the modified data are saved before it can fetch the new data.
A cache line that contains modified data that have not been
written to RAM is said to be “duty”.

The timing for writes from cache to RAM is always 5-1-1-1,
i.e. 8 cycles to write a cache line. This is 240 nanoseconds
or about 58 instructions.

Below is a graph giving the computed instruction rate for
various cache miss rates. This graph is the result of
analysis, not measurement but it agrees fairly well with test
data.

rate=MIPS/(c +(ir * ml +dr * m2) * pl + (m2 * r2 * p2 *
dr))

rate: The actual rate of instruction execution

MIPS:

C:

ml :
m2:
ir:
dr:
pl:

r2 :

p2:

Advertised (theoretical maximum) CPU
MIPS Rate (240).
Instruction load rate out of L1 cache.
Assuming 1.0.
L1 I-cache miss rate
L1 D-cache miss rate
Fraction of accesses that are instructions
Fraction of accesses that are data
Instruction penalty to load L1 line from
RAM (94).
ratio of dirty cache lines (those that must
be written before reloading new data into
the cache line).
Instruction penalty to write L1 line to
RAM (58).

The above yields a multi-dimensional space controlled by
ml, m2, ir, dr and r2 which is inconvenient to use for
estimation purposes. Generally one would like to see a
graph giving cache rates versus instruction rates. In the plot
below an aggregate miss rate is plotted as the X-axis and
MIPS is the Y-axis. For purposes of computing the cast-out
penalty only a D cache miss rate of 2.5% has been used as
well as a data access fraction of 40% has been used. Plots
for cast-out rates of 0%, 50% and 100% (r2) are included.
The formula then becomes:

Miss rate = (.7 * I-cache miss) + (.3 * D-cache miss)
rate = MIPS / (1.0 + m * 94 + (.025 * r2 * 58 * .4))

As one might expect, this can vary substantially based on
the software algorithm and instruction mix being executed.
The VO intensive operations tend to be more like 55%
instructions and 45 % data.

The D-cache miss rate gives results that are a little
pessimistic for low aggregate miss percentage and perhaps
optimistic for high miss percentage, but is a good estimate
for most applications. The tests run show a cast-out rate of
about 85% for I/O tasks and 40% to 80% for compute-

3

P

€60'61

PPS'6I

21

.ia$eaB samo3aq
paads howam wog uoyinq!.quo3 aqi pw ssa~ sawo3aq

9E9'OZ ISP'ZZ SI9'PZ ZPZ'LZ 96P'OE ZE9'PE L9O'OP SZS'LP P6E.85 IL'SL Z9'LOI OPZ

P9I'IZ LLO'EZ LE'SZ 691'82 Z99'IE SP1'9E SOI'ZP ZP'OS LZ8.29 EEE'EP IL'EZI OPZ

11 01 6 8 L 9 S P E Z I 0

mo-lse:, %OS

3 wJ-lse3 %O +

0

OS

00 T

OS T

002

OS2

OO€

Cache miss rate vs instruction rate for various CPU
speeds

+ 1 3 3 ~ ~ ~
~ 9 9 m

+ 6 6 ~ 7

a"

240 123.7 83.3 62.8 50.4 42.1 36.1 31.7 28.2 25.4 23.1 21.2 19.5
178.2 105.13 74.562 57.764 47.144 39.822 34.469 30.384 27.165 24.563 22.416 20.614 19.08
118 8 81.185 61.662 49.708 41.636 35.82 31.429 27.997 25.241 22.979 21.089 19.487 18.11

E

300

250

200

150

100

50

0

~~ ~______

Cache miss %

fact they are comparable to commercially available PCI
bridges.

For both reads and writes the bridge is capable of a
continuous burst at one word per cycle after the transaction
is initiated, at which point the speed is determined by the
speed of the target PCI device.

It can be seen that, at a 3% cache miss rate, cutting the CPU
speed in half makes only an 18% difference in instruction
execution rate. The benefit of higher CPU rates is seen
primarily for compute-intensive tasks. The PCI speed does
not change with CPU speed so VO bound tasks will also be
less influenced by CPU speed.

Note: One might expect the response to be flat if the
processor was running at the same rate as the memory
(33MHz). This does not occur due to the 10-1-1-1 memory
fetch timing.

3.3 PCII/O

The next factor that can have a substantial impact on CPU
performance is I/O to the PCI bus. The PCI runs at 33MHz,
which is fast for an I/O bus. But like the memory bus there
is overhead in initiating a new transaction. Unlike the
memory bus the PCI is only 32 bits wide, hence a single
PCI transaction transfers 4 bytes.

The overhead for initiating a PCI write is 5 PCI cycles and
the overhead for initiating a PCI read is 26 PCI cycles, or
780 nanoseconds. These may seem to be high values but in

5

PCI reads are completely synchronous for the CPU. That is,
the CPU must wait for completion before continuing.
Therefore any PCI read will cost a minimum of 780
nanoseconds with possibly some extension if the PCI device
is not able to respond on the first cycle. The only way to
generate a burst of more than one word for a CPU read is to
use the CPU's floating point registers. This will generate a
two-word burst and can nearly double the throughput.

These effects are not unique to the RAD750 implementation
but apply equally to commercial implementations.

PCI writes are more efficient, both because of the lower
initiation time and because some pipelining can occur.
When floating-point registers are used, bursts of up to four
words have been observed on the PCI bus.

The test results show that the instruction execution rate may
be less than the expected rate due to cache effects, with this
difference explained primarily by PCI VO latencies.

A PCI read of a single 32-bit value requires a minimum of
27 PCI cycles (810 nanoseconds). If floating-point registers
are used, throughput is almost doubled since 64 bits can be
read in a minimum of 28 cycles. In reality the target may
introduce one or two memory wait-states, but the results
observed indicate that throughput does in fact nearly double.
A similar principle applies to PCI writes.

The initiation time is the same for PCI transactions of any
length. In applications where direct memory access (DMA)
can be used for PCI VO, a major improvement in
performance is achieved. This is not only because the CPU
load is reduced but also because data may be transferred by
PCI burst transactions at a rate very close to the theoretical
limit.

3.4 PPC Multiple load / store instructions

Testing was performed to determine if PPC multiple
loadstore instructions would generate PCI burst
transactions and thereby improve throughput. No burst
transactions were generated and the performance was
equivalent to doing the I/O using single 32-bit instructions.

4 CONCLUSIONS

The full results of the “X2000 Advanced Avionics
Characterization Study” (JPL Document D-24447) comprise
a report of approximately 140 pages and it is not possible to
fully present the information contained to support the
conclusions given here.

While a processor will indeed run at the maximum
advertised rate under ideal conditions, it to be expected that
a real-world application will perform less well. For
example it has been shown here that the performance varies
substantially depending on how the software interacts with
the cache.

Flight software tends to require a high degree of
determinism, or at least guaranteed minimum performance.
Given the variations in performance due to cache activity,
this may become somewhat difficult to achieve. This study
shows that algorithm design and associated cache activity
makes a much bigger difference in software performance
than other factors such as system load. While there may be
more performance jitter than in older environments,
predicting its extent should still be well within manageable
bounds.

The ICER image compression benchmark and the DS1
image compression task clearly show the benefit of
designing algorithms that iterate piecewise over small

6

portions of the data rather than over the entire data set at
once. In iterating over an entire image the ICER benchmark
achieved a measured performance of -60 MIPS and it
achieved roughly twice that rate by iterating over small
image sections. In a performance-critical application
substantial benefit can be achieved by designing, when
possible, for small locality of reference, completing the
processing for a small section of code or data before moving
on to further processing. By minimizing I/O and doing
larger I/O operations (DMA, floating point register
transfers), substantial gains are possible.

In the UART tests a “slipstream” effect was observed in
which processing for the second UART in each cycle
executes about 20% faster than the first due to the first
interrupt having brought the code into cache. Performance
is enhanced by executing an algorithm as much as possible
for typically short time periods before proceeding on. This
benefit is only achieved if an algorithm is small enough to
fit mostly or entirely in the cache.

The I/O bound case is simpler to analyze. Given the PCI
bus rates (Section Error! Reference source not found.),
determining the amount of time required by an operation is
fairly straightforward. In this case PCI throughput is likely
to be the biggest performance factor.

Optimizing RAD750 performance should not be very
different than for other processors, except for cache
performance being an added and important factor to
consider.

4.1 Application performance versus complexity of
environment

As discussed earlier, software performance is largely
dependent on cache performance. Cache performance in
turn is dependent on the range of different memory locations
being accessed over time.

The effectiveness of cache is based on the heuristic that
memory accesses, either for code or for data, tend to be
localized over short time intervals and that memory
locations tend to be referenced multiple times over short
time periods. At the CPU level there is no distinction
between operating system tasks or an application, there is
just a series of instructions executing as a stream.

As a result, a given application may have a different
performance when run by itself, as compared to being run as
part of a system with interrupts and other tasks which
intervene and cause flushing of the cache.

Certain restrictions made it impossible to run exactly the
same tests in all scenarios, e.g. the requirement for reducing
PCI speed in tests involving the 1394 bus. Also, there is a
certain amount of noise present in the results due to
interrupts fi-om network activity that was necessarily present

during the testing. Therefore, making comparisons between
specific tests is difficult.

Interrupts I sec

3
9
129
513
1921

Star ID test

MIPS I-Cache D-Cache

17.3 4.2 3.8
20.4 2.5 3.4
22.9 1.1 3 .O
23.4 0.9 3 .O
23.4 0.9 3 .O

miss % miss %

The NVM write tests show a consistently small reduction in

data rate increases, however at the same time the difference
in MIPS is small. On the other hand the NVM read tests do

the D-cache miss rate for the interrupt service routine as the

not exhibit a similar effect.
I - 0.01 I - 0.02

D -2.30 D -2.44 D -2.52

The Star ID test showed a fairly consistent performance and The 1394 bus isochronous loopback tests do indicate an
should not be influenced by the PCI speed. This test interaction between the performance values for the interrupt
showed a 4.6% reduction in the MIPS rate when run as Part service routine (ISR), as shown in the following table. As
of the full-rate combination test as compared to running the number of interrupts per second increases, the ISR MIPS
standalone. A small but consistent reduction in performance increase by about 26%, while the I-cache miss rate
is observed as system load increases. In the table “I” is decreases.
instruction cache miss rate and “D” is data cache miss rate.

1394 isochronous loopback tests

MIPS vs Interrupt Rate, 1394 ISR

25

20

5

0
0 500 1000 1500 2000 2500

Interrupts per second

There are no other results that indicate a major impact on
the performance of applications in a realistic scenario based
on interrupts or other system activity.

In the 1394 tests, most of the processing occurred in the ISR
and there is not a lot of system activity (primarily network)
during the tests that would flush the ISR out of cache. This
effect is not seen as much in a more active system. If performance of an application is measured on an

otherwise completely inactive system there will degradation
due to cache interaction in the range of 10% to 15% as
compared to an active system. Most of this degradation will

7

occur quickly as the system becomes more active. The
performance interactions are observed to be greater for
applications that exhibit higher cache miss rates. This
would be expected since a low cache miss- rate
application will do more processing between interrupts.
Hence the influence of interruptions on cache performance
will be a smaller percent.

While tuning a system to reduce the context switches and
interrupt activity may be done, the results here indicate that
designing algorithms for locality of access will generally be
more productive. If code design and implementation cannot
be modified, overall it is desirable to arrange the system
activity to allow applications to run as long as possible
without interruption.

4.2 PCI bus contention

Contention is another factor that reduces performance as
system activity increases, in particular contention for the
PCI bus. This effect can be seen most clearly in the NVM
read tests when running standalone as compared to running
in combination with other components. The NVM high rate
tests experienced approximately a 30% decrease in
performance when run with the 1394 bus contending for the
PCI. Less than half of this degradation can be explained by
the difference in cache miss. The remainder (-20%) is the
result of the contention with the 1394 bus in accessing the
PCI bus.

For any application that uses program VO, this contention
will be seen as an increase in CPU time consumed since the
CPU must wait for the operation to complete. For an
application that uses DMA to transfer data this contention
will not be reflected in the CPU time but will show in the
maximum data rates achievable.

valid for the RAD750 architecture since the MIPS achieved
varies widely depending on cache activity.

MIPS became an allocation unit because it was a convenient
to use a single number. This MIPS rating was for a
particular instruction mix, which was not always well
understood or considered. For marketing reasons, it would
invariably represent “best case”. But even in older non-
cached architectures it was not a particularly useful
measure. The performance of these systems was also
affected by the extent of VO processing. Allocating MIPS
to applications usually did not take into account the
instruction mix, e.g. the different execution times of integer
and floating-point operations.

Given these failings, the percentage of the processor time
taken by a given task is a more meaningful allocation
measure. This is what was actually being allocated before,
in which MIPS allocations needed to be scaled based on
task characteristics such as floating point usage and VO
activity.

The performance data presented in this document is
intended as an aid in predicting how a specific type of
application will perform on the RAD750 architecture.
Unfortunately, scaling performance estimates for processors
that follow will be rather approximate. It will still be
necessary to run tests to characterize new platforms since
performance does not typically scale equally for all types of
operations between platforms. For instance, it is likely to be
true for some time that memory subsystems’ performance
will vary widely, a factor easily overlooked in a
manufacturer’s specifications.

It is hoped that this document will provide information
sufficient to aid in predicting the performance of
applications when hosted on the RAD750 / X2000 platform,
and form the basis for comparisons with other platforms.

4.3 MIPS and processor percent
REFERENCES

It has been common in designing systems to allocate to
software applications (such as attitude control, science, etc.)
portions of the processing capability based on the MIPS
rating of the processor. It is clear that this approach is not

[13 Len Day, et al, JPL Internal Document D-24447,
“X2000 Advanced Avionics Project Performance
Characterization Study”

8

