
JPL 

Automated Software Testing 
for the Common Operating 

Environment 

Distributed Systems Technologies Group 
Section 369 - Mission Software Systems 

Information Technologies & Software Systems Division 

Eugene Jones 
Eugene.Jones @jpl.nasa.gov 

(626)351-1538 

mailto:jpl.nasa.gov


Introduction JPL 

Problem: Too much code over too many platforms with too few 
resources to test every feature. 

Common Operating Environment (COE) works on 33 different platforms of 
5 different Operating Environments 
Approximately 178,000 lines of code 

40% in C, C++ 
40% in Java 
20% in scripts 

Combination of Command Line Interfaces (CLI), Application Program 
Interface (API) and Graphical User Interfaces (GUI) 

Software changes include correction of defects as well as introduction of 
new functionality 

Both must be integrated into existing code baseline 
Regression testing necessary to confirm that current capabilities are not 
compromised 

10/25/02 2 



E zo/sz/o 1 



Background 

Task is to provide a “common environment” for users/administrators 
across heterogeneous platforms within a site/administrative domain. 

Provide single point for user/group administration 
Manage processes usedkhared by different mission applications 
Provide a baseline security configuration for each platform 
Load software components onto each platform such that system conflicts 
are mitigated 

Work is being done for the Defense Information Systems Agency. 

10/25/02 4 



Solution aJPL 

Partial Solution: 
Use automated testing to supplement the existing testing staff 

Provide better test coverage of new functionality 
Provide better regression test coverage 

Goal 
Verify the nightly build 
Regression test core GUI and application functionality. 
Provide initial feedback before testing hours are expended. 
Develop a process to compliment manual testing 

Caveats 
Automated testing assumed to be at most a partial solution 
Automated testing tool limitations may restrict the types of tests 

Testing must be completed by 8 am to be of use to the test staff. 
performed 

10/25/02 5 



Implementation JPL 

Tool selected 
Rational Robot version 2002.05.20 (selected to coordinate with customer 
test i ng ) 

Configurations supported 
Windows NT Workstation 
Windows 2000 Professional 

Nightly Procedure 
Manual Process 

Restore the OS using Drive Image for test machines to known configuration 
Configure tool which includes importing scripts and setting playback options 
Set scan for installation flag sent from the build machine 
Automated nightly build occurs for UNlX and Windows 

Tool installs new Windows software build 
Tool performs testing 

Tests graphical interface 
Tests for positive results and error conditions 
Performs OS reboots 
Modularized scripts for reuse 

10/25/02 6 



List of Tests Performed AJPL 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Software Installation 
Merge account information between two machines 
Reload the account management server 
Create user 
Create group 
Create profile 
Assign a password to a user 
Change to profile selector configuration 
Assume multiple profiles 
User account modification 
System process verification 
Profile removal 

10/25/02 7 



Results JPL 

Time Frame: 12 months 
3 bugs detected 
7 faulty builds detected 

Approximately 6 work weeks used to develop the original tests 
Approximately 2 hours a week needed for oversight 
Manually run testing requires two and a half hours 
Automated testing requires one and a half hours 

Hours Invested 

Even though few bugs or faulty builds were detected, the tool 
demonstrates that basic functions of the software are not broken in 
current builds. 

10/25/02 8 



Future JPL 

Amplify the number of metrics 
Time to recover from nightly build problems 
Time and workforce required for regression testing 
Regression test coverage 

Incorporate UNlX complement 
Script extension 
Integrate Unit Tests 

10/25/02 9 



Lessons Learned JPL 

Automatic testing can provide consistent test coverage with breadth 
and depth. 
Automatic testing can include APl’s, CLl’s and GUl’s. 
Automated testing can supplement but not replace manual testing. 

Automated testing requires an initial and ongoing time investment. 

10/25/02 10 



Appendix A 
Details of Tests JPl, 

System Administrative Testing 
First the Installer is opened. 
The test segment is selected to be installed and the Conflicts, Requires, 
and Release Notes buttons are tested. 
The segment is installed and the Verification Log is checked. 
The SampleSW segment is installed, home directory creation, CDS entry, 
and the segment name addition to the Segment Installer list of installed 
segments is checked. 
The Segment Installer is closed. 
The Edit APM Configuration Tool is opened and the APM Master is 
changed and submitted. 
The APM Authentication GUI is opened and the Local APM Authentication 
key is set. 

10/25/02 11 



Appendix A continued 
Details of Tests JPL 

System Administrative Testing continued 
The machines are merged. 
The APM Client tool is opened and the host list is checked. 
The TweakUl utility is opened and secman is used as the user to login 
auto mat ical I y . 
The registry is edited and the next script to be run upon login is entered. 
The reboot script is initiated. 

After reboot, secman user is logged in. 
Close the COE User login conformation window. 
Execute reload the APM Server. 

APM User Testing 

Verify reload message. 

10/25/02 12 



Appendix A continued 
Details of Tests JPL 

APM User Testing continued 
The Profile Selector Script is run. The script tests to see if the profile is 
assumed or not, and if the profile is not assumed it is logged as a failure 
and assumes the profile. If the profile is assumed, it de-assumes the 
profile and verifies the profile is de-assumed before reassuming the 
profile. 
The APM Client Script is run. The script creates a local account, a group, 
and a profile. 
The Assign Passwords Script is run. The script attempts to change a 
user’s password using an incorrect administrative password, and a correct 
administrative password. 
The Profile Selector Config Script is run. The script begins by verifying the 
single option is selected then selects the multiple option. The script then 
proceeds to add the test profile to the secman user and assume the 
profile. Then the script de-assumes the profile and removes the profile 
from the secman user. Finally, it returns the Profile Selector Configuration 
tool back to the single option. 

10/25/02 13 



Appendix A continued 
Details of Tests JPL 

APM User Testing continued 
The TweakUl utility is opened and the Administrator is used as the user to 
login automatically. 
The registry is edited and the next script to be run upon login is entered. 
The reboot script is initiated. 

After reboot, Administrator is logged in. 
The first process of this cycle is the installation of the TestAbortTwo 
Segment. The script begins by verifying that the TestAbortTwo Segment 
is not installed. Then the segment is installed. 
The registry is edited and the next script to be run upon login is entered. 
If any of the TestAbortTwo segment processes log files exist, they are 
deleted. 

TestAbortTwo Segment Testing 

10/25/02 14 



Appendix A continued 
Details of Tests JPL 

TestAbortTwo Segment Testing continued 
The TweakUl utility is opened and the secman is used as the user to login 
automatically. 
The reboot script is initiated. 
After reboot, secman user is logged in. 
Upon login the RunOnce process log is verified. 
The TAB profile is created and assigned to the secman user. 
The multiple profile option is selected in the Profile Selector Configuration 
tool. 
The TAB profile is assumed. 
The Session process is verified. 
The registry is edited and the next script to be run upon login is entered. 
The reboot script is initiated. 
Once the user is logged in the session, periodic, boot, and background 
processes are verified. 

10/25/02 15 



Appendix A continued 
Details of Tests JPL 

TestAbortTwo Segment Testing continued 
The registry is edited and the next script to be run upon login is entered. 
The reboot script is initiated. 
After reboot, the secman user is logged in. 
secman is logged in and the session process is verified. 
The TAB profile is de-assumed and the session exit process is verified. 

10/25/02 16 




