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Nanoscale Quantum States
(Artificial Atoms, size 20nm)

Parameterization: ,‘

* TB parameters determined from genetic
algorithm to match experimentally
measured band edges and masses.

Mechanical Strain:
e CG-based minimization of mechanical
strain to determine atomic positions

Electronic Structure:
* Custom Lanczos eigenvalue solver

Numerical Simulation:
* Problem size is large: 100 GB is typical
'storage requirement for Hamiltonian
* Parallel implementation of both strain”
and electronic structure calculation is

necessary!
* 1D data decomposition
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» Divide Simulation domain into slices.

» Communication only from one slice to the next (nearest neighbor)
* Communication overhead across the surfaces of the slices.

. Lif'niting operation: sparse matrix-vector nﬁultiplication

* Enable Hamiltonian storage or re-computation on the fly.
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« Eigenvalue computation ranging from 1/4 to 16 million atoms

* Large problems are too big for a single CPU (memory requirements)

. s'p3s basis set , Matrix sizes up to 1.6 108x1.6 108

« Recompute Hamiltonian matrix on the fly.

* Measure time for 30 Lanczos iterations, Full problem 1000-5000 iterations

* Tmillion atoms 5000 iteration 1 CPU: ~48 hours 20 CPUs: ~3.4 hours

* Computation time linear in system size.
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Problem (1million atoms):

: 100 Mbps * Serial strain computation:
~43 min.

P800,2 GbpS * Serial electronic structure calculation 77

(1000 iterations):
~ 9.6 hours

p. Time (s)

* Parallel electronic structure
computation on 20 CPUs:
~41 min.
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' @ Solution:
2 1,000,000 atoms \n« | parallo

* Parallelize strain calculation as well
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Result:

* Reduce time to 2-5 minutes on a parallel machine.

*See difference between a fast 2Gbps and a 100Mbps network.
Do not see that difference in the electronic structure calculation.

* Parallel strain computation is more communication dependent than the
electronic structure calculation.




Bulk Semiconductors are described by:

* Conduction and valence bands,
bandgaps (direct, indirect), effective
masses

* 10-30 physically measurable quantities

Tight Binding Models are described by:

* Orbital interaction energies.
* 15-30 theoretical parameters

» Match experimental data in
various electron transport areas of
the Brillouin zone: "

» Effective masses of electrons at
[, Xand L

* Effective masses of holes at I’
*Band edges atl, Xand L

Analytical approach:

» Exact diagonalization at | for sp®d®s’

» Formulas developed by Tim Boykin at
UAH (subcontract) for effective masses
and bandgaps from interaction energies

Numerical approach:
* Use a genetic algorithm to do fitting.

15-30 theoretical interaction energies
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* Total strain energy (computed from Keating model) is minimized
through CG-based algorithm
* Periodic boundary conditions require relaxation of the period
* InGaAs bond length distribution: ”
*VCA on the bond length is incorrect
*Locally, InAs and GaAs (mostly) maintain their bond length character




Problem:

* VCA provides generally a linear bandgap if
interpolated from the binaries GaAs, AlAs,
and InAs. |

Approach:
* sp3s* tight binding model

random alioy I

Experimant | * Perform 3-D alloy simulation of the
-- VCA

bandedges.

* Represent each individual atom in the
0.4 0.6 : chunk of material

Al concentration (x)
* 3-D random alloy simulation matches
experimental data well.

AlGaAs:

« VCA derived from pure GaAs and AlAs =
results in an wrong bandgap.

* 3-D simulation gives the correct bowing.

InGaAs:
y Imgroved bowing versus the VCA. |
05 Y - Still a problem with over estimating the

' . band gap
In concentration (x) -> parameterization dependent
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* Concentration may vary stochastically as well.

* Concentration noise is larger than configuration noise.

* For a system containing 1000 atoms, the variation is about 10-15 meV
* Conduction band noise shows a significant feature at the I'-X transition (AI~0 45)
*Valence band dependence is much smoother.
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* Coupled InAs QDs




E =0.828 eV

Unstrained system:

- Slight variation in the geometry of the two QDs breaks degeneracy.

* Compressive strain on the QD effectively raises E_ within QD. Without strain,
potential well confining electrons is deeper and essentially decouples the two QDs.




E =1.364 eV E=1.381eV

Strained Coupled QD:
* In absence of electron-electron interaction, ground state is bonding state;
first excited state is anti-bonding state.

.* Energy split (17 meV) is dependent on wave function overlap.

* Proper inclusion of strain is necessary to obtain correct eigenstates!
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'+« Examine strain along major symmetry axis (z) for pr|m|t|ve cells centered
about As atoms

. TensHe bi-axial strain outside QD (g>0) due to stretching of GaAs to match
InAs. Compressive strain in QD.

e | attice constants follows same trends.
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In-As bonds compressed in x-y
-> Ec raised from bulk value of ~0.58eV to ~1.2eV
-> Ev HH raised from bulk value of ~0.22eV to ~0.3eV

Ga-As bonds compressed in x-y and stretched in z inside dot
-> Ec raised from bulk value of ~1.42eV to ~1.55eV

-> Ev raised from bulk value of 0eV to ~0.1eV




VCA / no Disorder Disorder Sample 1 pisorder Sample 2




(i) hole 3

E=0.2089%eV E=0.1942eV E-0.1328eV
AE=-0.00meV AE=-147/meV W AE=-16.0meV

(k) hole 5 () hole 8

£=0 1811eV BE=0.1780ev E=0.1765eV

E:ﬁdreu‘ | e AE=-30.9meV 3 .&E:BE.dm@V
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* Atomistic
granularity

c = 2.3meV

* Cell
granularity

c=4.5meV

eEcand Ev
. strongly
correlated

e Ec and x
WEELLY
correlated :
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Effect on ground state electron energy: —
fixed
::‘ eg:o?ii/lnm

* System: Dome-shaped In, ;Ga, ;As QD
15nm radius; 5.4 nm height
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| BC: no constraints on QD; strain
~and ground state energy are
underestimated
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BC: QD boundary pinned; strain
and ground state energy are : 3 12
- overestimated bufferlength (nm)

BC (Ksupercer=0): Eigenvalues lie
in between free and fixed case, but results

, Conclusions:
are much closer to case of free BC.

* Overall convergence is slow.

« Varying only vertical buffer size gives a
good approximation.




Question: What is the contribution of
alloy disorder to linewidth broadening?

<
0

* Previous PL experimental results have
found large contributions due to
inhomogenous broadening (~30 meV)

~ [R. Leon et al., PRB, 60, pR8517]
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* Single QD PL measurements:-have found
narrow linewidths (~0.9 meV) . +
[Nagamune,; APL, 67, p3257] : vertical buffer fength (nm)

Results:

» Convergence is slow but can place an *
upper bound of 0.35 meV, so the effect is
small.

Computation:
 Use a ‘direct sampling method’ (roughly
100-200 samples)

e Assume no correlation between location of

ah < * Caveats:
In, Ga cations within the QD

* Have not included interface
interdiffusion

* Variation is larger if there is short-
range order (clustering).






