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Abstract-This paper describes using Proper Orthogonal 
Decomposition (POD) method to create low-order 
dynamical models for the Model Filter component of 
Beacon-based Exception Analysis for Multi-missions 
(BEAM). The POD modeling procedure is described, and 
its usefulness in creating simple low-order dynamical 
models of a complex system. The POD procedure will be 
shown on an example problem of a Burgers’ Equation. It 
will be demonstrated that stable low-order dynamical 
models can be created even in the presence of noise 
commonly found in experimental data. 
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1. INTRODUCTION 
The Proper Orthogonal Decomposition (POD) is a method 
for creating low-order dynamical models for complex 
system using either empirical or simulation data. This 
method has been successfully applied to many complex 
systems, including complex fluid flows such as those 
encountered in turbulence. [5],[7] The method has been 
viewed as a viable method for reducing computational 
complexity by generating simple models that can be used for 
control and simulation. 

This paper describes applying POD method to create low- 
order dynamical models for the Model Filter component of 
Beacon-based Exception Analysis for Multi-missions 
(BEAM). BEAM is an end-to-end method of data analysis 

intended for real-time (on-board) or non-real-time anomaly 
detection and characterization. The Model Filter 
component, also know as the “gray-box,” serves to filter the 
data using a deterministic model of system, Le., “white box,” 
and generate a residual which is then described by a 
stochastic model, Le., “black-box.” 

In order to fully implement the “gray-box” fault detector, a 
deterministic model is necessarily. In many cases, however, 
a detailed model of the system may not exist, or the model 
may be too complex to implement for real-time applications. 
A simplified model that accurately describes the system is 
desired. The POD method is attractive method for creating 
simplified models for dynamical systems. It offers the 
advantage of reducing complex system models to a simple 
low-order dynamic model. The model can be created either 
from simulation or empirical data of the complex system. 
The POD method maximizes a priori physical knowledge 
about the system by projecting empirical measurement 
derived modes onto a physical model of the system. 

In this paper, the BEAM method of fault detection and 
analysis will be introduced. The gray-box component will 
be discussed in further detail to motivate the need for 
creation of a simplified dynamical model of the system from 
empirical data. Then the POD technique will be introduced 
as well as the steps needed to create a simple low-order 
dynamical model of a complex system. As a demonstration, 
the POD procedure will be shown on the Burgers’ Equation. 
It will be demonstrated that the POD method can be used to 
construct a high fidelity low-order dynamical model even in 
the presence of noise in the data. 

2. BEAM OVERVIEW 
BEAM is a complete data analysis system for real-time or 
off-line fault detection and characterization at the signal- 
level. While the originally intended for generic system 
analysis on-board deep space probes and other highly 
automated systems, the compact and modular nature of its 
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subroutines naturally lends itself to either ground or flight 
deployment. 

At the simplest level of abstraction, BEAM is software, 
which takes data as input and reports fault status as output. 
Implementation of this software dependents on the 
application, but a typical application would have a system 
with a number of individual components, each of which 
reports health or performance data to a local computer. To 
accommodate such a wide range of possibilities, the 
computational engine of BEAM itself is highly adaptable 
with respect to subsystem size and complexity. 

For each single component or subsystem, we can expect to 
receive four types of data: 

1. Discrete status variables changing in time - modes, switch 
positions, health bits, etc. - from sensors or software 

2. Real-valued sensor data varying at fixed rates - 
performance sensors or dedicated diagnostic sensors 

3. Command information - typically discrete as in 1. 

4. Fixed parameters - varying only when commanded to 
change but containing important state information 

These types of data are all valuable but used in different 
ways. Status variables and commands are useful to a 
symbolic model. Commands and fixed parameters are used 
in a physical system model while the time-varying sensor 
data are used in signal processing components. An optimal 
strategy must take each of these into account and produce a 
single, unified decision. In order to study each and combine 
results, BEAM has the following architecture. (Figure 1) 

Figure 1. Top-level BEAM architecture. 

A few notes about the architecture are in order before we 
consider the individual descriptions of its components. 
Specifically, we should consider the data flow, which is 
slightly complicated: 

1. Fixed parameters and command information are input to 
the specific system modules (if any). These are contained in 
the Symbolic components (Symbolic Data Model, Predictive 
Comparator, Causal System Model, and Interpretation 
Layer) and the Physical (Numeric) components. These data 
will not be propagated further and influence other 
components only through the model outputs. 

2. Discrete variables will only be propagated through the 
symbolic components. The symbolic components support 
the signal processing components by providing a mode 
determination from the discrete data. 

3. Time-varying quantities are separated into two groups as 
part of the training process. Specifically, signals with high 
degrees of correlation to others, or those not expected to 
uniquely indicate a severe fault, are only passed to the 
Coherence Fault Detector. Signals that may uniquely 
indicate a fault, along with those already flagged as faulty by 
the coherence analysis, require additional processing and are 
also passed through the Dynamical Invariant Anomaly 
Detector. 

4. The split between time varying signals described in 3. is a 
computational efficiency consideration and reflects general 
philosophy of operation, but is not essential. Given 
adequate resources, there is nothing preventing all time- 
varying signals from being sent to both types of signal 
analysis at all times. 

Physical (Numeric) Models 

1. Model Filter (MF): Receives sensor or other quantitative 
data, conditions it in terms of synchronicity or drop-outs, 
and combines results with physics model (simulation) 
predictions. 

2. Coherence Detector (CD): Receives multiple conditioned 
quantitative signals and performs anomaly detection using 
cross-signal statistical features. 

3. Dynamical Invariant Anomaly Detector (DIAD): 
Receives a single quantitative signal one at a time and 
performs anomaly detection using a parametric estimate of 
the residuals. 

4. Informed Maintenance Grid (IMG): Combines outputs 
from the Coherence Detector over long operating periods to 
detect subthreshold degradation and predict functional 
failures. 

5.  Prognostic Assessment (PA): Uses the parametric signal 
estimates from DIAD to forecast future signal values and 
identify potential signal faults. 



Symbolic Models 

6. Symbolic Data Model (SDM): Receives discrete data and 
constructs an internal state estimate of the system. It detects 
discrete signal mismatches (explicit faults) and identifies 
system mode for use by other components. 

7. Predictive Comparator (PC): Combines signal 
implications from the CD and DIAD as well as discrete 
reports from SDM in an attempt to unify results from the 
signal-based and symbolic reasoning components. 

8. Causal System Model (CSM): Backtracks implications 
along the system structure to reduce the complexity of fault 
reports. This is a simplistic form of diagnosis. 

9. Interpretation Layer (IL): Fuses results from different 
components and constructs a final report. It serves as an 
interface between BEAM and other components. 

Specific instantiations of BEAM may omit some of these 
components depending on the particular characteristics of 
each system, such as sensor types, cost to maintain, 
characteristic time scales, and availability of model or 
training information. For example, only the Dynamical 
Invariant Anomaly Detector was implemented for Space 
Shuttle Main Engine (SSME) analysis due to the transient 
nature of SSME faults. [3] 

3. MODEL FILTER 

In the BEAM architecture, the Model Filter (MF) and the 
Dynamical Invariant Anomaly Detector (DIAD) form the 
approach called the “gray-box” method. [2] It is called a 
“gray-box” because it incorporates both a “black-box,” i.e., 
stochastic model and a “white-box,’’ i.e., deterministic 
model. It is a hybrid model incorporating elements from 
residual-based methods and parametric-estimation methods. 
It is similar to adaptive-threshold methods in that a residual 
is generated without any regard for robust residual 
generation. However, instead of examining the amplitude of 
the residual as in the case of the adaptive threshold methods, 
the structure, i.e. model parameters, of the residual is 
examined. The residual generation is our “white-box.’’ The 
residual is modeled using techniques similar to the 
parametric estimation methods. The method is distinct from 
the standard parametric estimation method in that the system 
identification is carried out on the residual, not the system 
variables directly. The residual is parameterized, not the full 
system. In our terminology, the parameter estimation 
method is a “black-box.’’ 

A block diagram of the gray-box method is shown in Figure 
2. After filtering the deterministic components using the 
model of the system, the residual is separated into its linear, 
non-linear, and noise components and is fitted to stochastic 
models. The parameters to the linear, non-linear, and noise 

models completely describe the residual. The gray-box has 
several advantages. First, the full model is employed rather 
than only the model structure as in the case of standard 
parametric estimation methods. Thus the gray-box takes full 
advantage of the information about system. Second, the 
gray-box method can be made robust to modeling errors 
which can be taken care of during residual modeling. The 
model of the residual can also describe many unmodeled 
phenomena in the original model. Finally, the method is 
applicable to both linear and non-linear systems. 

disturbance(t) 

I 
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Figure 2. Block diagram of the gray-box method. 

The residual generation is as follows. Let us assume that the 
theoretical model is represented by a system of differential 
equations: 

where x(t) is the state variable vector, u(t) is the known 
input, and f is the known theoretical relationship following 
from conservation laws of mechanics, thermodynamics, etc. 
The last term, y(t), represents components which lack 
theoretical descriptions, are too complex, or are the result of 
modeling errors. These can include sensor noise, unknown 
input to the system, friction in bearings, material viscosity, 
and other secondary effects such as torsional oscillations of 
the shaft, flutter in the turbine and compressor blades, 
incomplete fuel combustion, etc. 

The estimate of the system is accomplished by substituting 
the observed sensor data for the evolution of the state 
variables, x*(t), and input, u(t). Hence: 

x” ( t )  = f (x’(t),u(t)) . 

The residual, 



(3) 

is generated by subtracting the solution of Eq. 2 , %* ( t )  , 
which is generated by using the observed state variables, 
x*(t). from the solution of Eq. 1. Hence the original 
theoretical model is the filter. 

In our gray-box technique, the residual is described by its 
dynamical invariants comprised of parameters that describe 
the linear, non-linear, and noise components. The linear 
component is described by an Auto-Regressive Transfer 
(ARX) function; the non-linear component, by a time-delay 
feed-forward neural network with sigmoidal transfer 
function; and the noise component, by a Markov chain 
process. The parameters, i.e., dynamical invariants, are a 
robust measure of the dynamical behavior of the system 
under observation and provide an easy method for 
classifying the data as nominal or anomalous by examining 
the direction of vector. 

To take full advantage of the gray-box method, a good 
deterministic model is required, i.e., E A good deterministic 
(physical) model of the system is crucial for robust residual 
generation for maximizing the accuracy of fault detection. 
However, in many cases, a detailed model of the system 
does not exist, or the model may be too complex to 
implement for real-time application. A reliable method for 
generating a simplified model that accurately describes the 
system is required. In such case, the POD is an ideal 
method for creating simplified models for dynamical 
systems. It offers the advantage of reducing complex system 
models to a simple low-order dynamic model for real-time 
applications as well as generating models from empirical 
data when the physics of the system is known only partially. 
In the following sections, the POD technique will be 
illustrated. It will be demonstrated on an example problem 
of a Burgers' Equation in which a complex nonlinear partial 
differential equation is reduced to a set of ordinary 
differential equations. 

4. PROPER ORTHOGONAL DECOMPOSITION 
Proper Orthogonal Decomposition (POD) modeling is a 
method of creating low-dimensional approximate 
descriptions of high-dimensional processes. POD modeling 
requires two steps. The first step is to extract the "mode 
shapes" or basis functions from experimental data or 
detailed simulations of high-dimensional systems. This step 
is also known as Principal Component Analysis (PCA), 
Karhunen-Loeve Decomposition (CLD), or the Singular 
Value Decomposition (SVD). The second step involves 
projection of the basis functions to a low-dimensional 
dynamical model using the Galerkin method. 

In the mode extraction step of POD, we wish to approximate 
a function u(x,t) over some domain of interest as a finite sum 
in the form of separation of variables: 

where x, f are the spatial coordinate (possibly a vector) and 
time, respectively. The representation of Eq. 4 is not 
unique. If the domain of x is a bounded on interval X, then 
the M x )  can be a Fourier series, Legendre polynomials, 
Chevyshev polynomials, etc. In the case of POD, the &x) 
are chosen through modes extracted from SVD analysis. 

If basis functions are orthonormal: 

in the least square sense. 

In the case of discrete data, we evaluate u(x,f) at N instants 
of time, thereby taking take N sets of m simultaneous 
measurements at these m locations in x. We arrange our 
data in an N x m matrix A where the elements of A, is the 
measurement from thej" probe taken at the i" instance of 
time. 

A = U C V T ,  (7) 

where U is an N x N orthogonal matrix, V is an m x m 
orthogonal matrix, and Z i s  an N x m diagonal matrix. The 
diagonal elements L',, consist of nonnegative numbers a,,, 
which are arranged in decreasing order. The a, are the 
singular values of A and are unique. 

where Q = UL', q k  be the k" column of Q and vk be the k" 
column of V. In terms of Eq. (41, q k  represents adt), and vkT 
represents Mx).  

For POD modeling, a lower rank approximation to A is 
desirable in order to reduce the order of the equation. A 
lower k rank approximation of A may be obtained by setting 
the aK+I = =ax+3 =aK4 = . . . = a, = 0. The lower rank 
approximation is given by: 

and 
Ak = UCkVT,  (9) 



Q = A k V .  (10) 
The cut-off maybe determined through various methods, 
including simple inspection, statistical methods, time 
history, etc. A full discussion of this topic can be found in 
141. 

5. GALERKIN PROJECTION 

For a system governed by a partial differential equation 
governed by the form: 

where u(x,t) is some function of space and time and D, is a 
nonlinear differential operator that depends on parameter 
A. For example, /z = (M ,Re) , where M is the Mach 
number, and Re is the Reynolds number in fluid mechanics. 

To compute the approximate solution to (1 I ) ,  we project the 
equations onto a finite-dimensional subspace. The finite 
space in this case is the space spanned by the POD modes as 
shown in the previous section. By taking the inner product 
with Eq. 4: 

u k  = (O/l(’>, pk) 9 (12) 
we obtain a set of ordinary differential equation for the time 
dependent coefficients, uk ( t )  . Please refer to [5] for more 
information on Galerkin projection. 

6. EXAMPLE - BURGERS’ EQUATION 
The POD procedure will be shown on the Burgers’ Equation 
as given by: 

au au 
- + U - = p ~ ,  (13) 
at ax ax 

where u(x,t) is the wave propagation speed, and p is the 
diffusion coefficient. Burgers’ Equation is a nonlinear 
partial differential equation that can describe commonly 
encountered phenomenon such as gas dynamics, flood 
waves, glaciers, car traffic, etc. [6] In the case of 
automobile traffic, it can describe velocity of an automobile 
wherein the driver adjusts his or her speed according to the 
traffic density. It can also describe flow of information 
packets through a network. Similar to automobiles, the rate 
at which packets move through switches can be simulated 
via the Burgers’ Equation. 

The simulation of Burgers’ Equation with p = 0.05 using 
Spectral element method of 97 elements is shown in Figure 
3. The initial conditions were: 

u(x,O) = sin(x) (0 < x < 2.11) (14) 

The results for time t = 0 to t = 1.0 are shown in blue. As 
time advances, the wave front becomes steeper and steeper. 
In time, a shockwave will develop when the wave front 
reaches vertical. The black lines represent simulated 
empirical data where 10% uncorrelated Gaussian noise were 
added. 

Figure 3. Burgers’ Equation simulation with initial 
condition u(x,O) = sin(x) over (0,2n). The results are shown 
in blue. The results with 10% uncorrelated Gaussian noise 
are shown in black. 

7. RESULTS 

The extracted POD modes from the simulation of Burgers’ 
Equation (Figure 3) are shown in Figure 4. The first six 
POD modes are shown. It is evident that the modes are 
symmetric and odd functions about the center. This is due 
to the nature of Burgers’ Equation which is anti-symmetric 
about n. The higher modes are comprised of progressively 
higher frequency components. The contribution of each 
mode to the reconstruction of the original data can be 
analyzed by examining 0 , 2 ,  where i is the i’th mode. It can 
be loosely called “energy” of the mode. (In the case where u 
is velocity, this is true.) As shown in Figure 5 ,  the 
contribution of the higher modes decay rapidly. (Note the 
logarithmic scale.) Finally, the Galerkin simulation using 
the first 7 POD modes is shown in Figure 6. To recall, it is 
the simulation of Eq. 12, where a set of 7 ordinary 
differential equations is solved. As evidenced by the 
closeness of the Galerkin simulation (in black) and full 
Spectral element simulation (blue), the two simulations 
agree closely. The difference is on the order of 1%. In 
effect, the number of computational elements has been 
reduced from 97 (Spectral element method) to 7 
(POD/Galerkin method). 



Figure 4. First six extracted modes of Burgers’ Equation. 
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Figure 5. The “energies” of the first 6 modes of Burgers’ 
Equation. 
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Figure 6. Galerkin simulation of Burgers’ Equation using 
first 7 POD modes. The Galerkin simulation is shown in 
black. The Fourier simulation is shown in blue. 

two modes are similar to those without noise. Only slight 
ripples are observed. However, the higher modes are 
unrecognizable. The random white noise manifests itself as 
higher modes. As shown in Figure 8, the contribution from 
the higher modes does not decay as in the case without 
noise. This is because white noise contributes to every 
frequency and POD mode. 

The Galerkin simulation using the 7 noisy POD modes are 
shown in Figure 9. Even with the noisy modes, the Galerkin 
simulation (black) closely matches those of full-blown 
Spectral element simulation (blue). The difference is in the 
order of 5%. This result demonstrates that the 
POD/Galerkin method is robust to noise, and it can be used 
in conjunction with empirical data which is typically 
characterized by noise. 
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Figure 7. First six extracted modes of Burgers’ Equation 
with 10% uncorrelated Gaussian noise. 
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Figure 8. The “energies” of the first 6 modes of Burgers’ 
Equation with 10% uncorrelated Gaussian noise. 

To test the robustness of the POD/Galerkin method, 10% 
uncorrelated Gaussian noise was added to the simulation. 
The extracted POD modes are shown in Figure 7. The first 
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8. CONCLUSION 
The procedure for creating a low-order dynamical model for 
a complex system using the POD method was illustrated. As 
an example, the POD procedure was shown on the Burgers’ 
Equation. It was demonstrated that the POD method could 
be used to construct a high fidelity low-order dynamical 
model even in the presence of noise in the data. In the 
absence of noise, the lower-order model (7 POD modes) 
could simulate the system with 1% accuracy. Under noisy 
conditions (10% uncorrelated Gaussian noise), the model 
could simulate the system with 5% accuracy. 

The POD method will serve as an important technique for 
the development of the Model Filter component of BEAM. 
In order to fully implement the Model Filter, i.e., “gray- 
box,” fault detector, a deterministic model is necessarily. In 
the case where a detailed model of the system does not exist, 
or the model may be too complex to implement for real- 
time, a reliable method for generating a simplified model 
that accurately describes the system is required. In such 
case, the POD is an ideal method for creating simplified 
models for dynamical systems. It offers the advantage of 
reducing complex system models to a simple low-order 
dynamic model for real-time applications as well as 
generating models from empirical data when the physics of 
the system is known only partially. 
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