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1. Synopsis 

The Atmospheric Infrared Sounder (AIRS) was launched into polar orbit on May 4, 2002 aboard 
NASA's EOS satellite, Aqua. Every day the instrument yields about 28.8 GB of data organized in 
240 files: 120 ascending the daylight side of Earth, and 120 descending on the night side. F'iles 
contains 135 lines (along-track) of 90 footprints (cross-track) each. In each footprint AIRS measures 
radiance in 2378 spectral bands. A prime objective of the EOS program is to  compile global, long- 
term data sets for climate change studies by the research community. All but the most well equipped 
users will find accessing 'and manipulating 28.8 GB per day collected over a period of years to  be 
unmanagable. One traditional solution to  this problem is to  produce global maps of means and 
standard deviations for each parameter of interest. Typically, this is done on a one degree spatial 
grid, and data are summarized over a period of a day or month. Unfortunately, this discards a 
substantial amount o f  potentially important information about the data distribution. Means and 
standard deviations only fully characterize a distribution it is normal, and capture no information 
about joint relationships among parameters. Covariances or correlations are sometimes reported to 
provide this information, but their numbers become large as the square of the number of parameters. 
Finally, summaries based on moments contain no information about outliers, which may be among 
the most interesting data for science analysis. 

We propose a summary product that describes data belonging to  each one degree grid cell by a set 
of multivariate representatives and weights and errors associated with them. For example, in the 
exercise below we summarize three days worth of AIRS radiances a t  eleven of the 2378 channels. 
Whereas traditional summary products might provide eleven maps of  means, eleven maps of standard 
deviations, and some o f  the ll(11- 1)/2 = 55 covariances or correlations, we provide a data product 
having K representative 11-vectors for each of the (180 x 360 =) 64,800 one degree grid cells. Each 
representative stands in for some number of the original ll-tuples of radiances acquired in the grid 
cell. That number is given by counts associated with the representatives. K may vary from grid cell 
to  grid cell depending on how many representatives are required t o  adequately describe their data. 
Users may perform computations appropriately weighted by count, t o  estimate arbitrary functions of 
the data from this much smaller proxy data set. We also report the average squared euclidian distance 
between the representatives and the observations they stand for as a measure of error incurred using 
the representaives in place of  the original data. 

How useful this data product is for science analysis depends on whether conclusions drawn from the 
summary product are reasonably close to  those that would have been drawn from the original data. 
Below we demonstrate that this is indeed the case for a simple analysis of AIRS radiance data. 

http://Amy.BravermanOjpl.nasa.gov


2. AIRS Test Da ta  

AIRS brightness temperature in eleven channels, acquired from descending (nighttime) granules, 
July 20-22, 2002. 
One datum: xlat,lon = ( ~ 0 , ~ 1 , ~ 2 , ~ 3 , ~ 4 , ~ 5 , ~ 6 , ~ 7 , ~ 8 , ~ 9 ~ ~ 1 0 )  I 

Variable Frequency 
724.742 
735.607 
755.237 
91 7.209 
1231.19 
1285.323 
1345.174 
2412.562 
2450.02 
2500.313 
26 16.095 

Measures 
temperature, high altitude 
t emperat ure, mid-at ltitude 
temperature, low-altitude 
total window 
window 
total water vapor/methane 
total water vapor 
window 
window 
window 
window 

Table 1: AIRS test data channels. 

0 Number of  11-dimensional data points per 1" grid cell: 

N-?0-2uulx102 



3. Summarization Algorithm 

Value Assignment 

1. Partition data points according to membership in 1" grid cell. 

Summarized 
Cluster Cluster Cluster 

Error 
Cluster 
Index Representative Count 

N2 = 2 
0 yo =avg(ziv-l) NI = 1 Do = 0 
1 Y1 = avg(zo, 2 2 )  D1 = avg(llz0 - Y1 (I2> 1122 - Y l  11") 

K - 1 Y K - ~  = avg(2l)  NK-1 = 1 D K - ~  = 0 

2. For each 1" subset, apply a clustering algorithm such as K-means (Macqueen, 1967) or Entropy- 
constrained Vector Quantization (ECVQ; Chou, Lookabaugh and Gray, 1989). 

Select K observations at 
random as representatives 

Data: 
N 1 1-dimensional data 

points 
Assign observations to 
nearest' representative 

Update representatives 

Assign data to nearest 
euclidian distance duster 

K (or fewer) cluster 



4. Summarization Results 

0 ECVQ algorithm applied t o  AIRS test data using a maximum of K = 15 clusters per grid cell. 

a Processing time: approximately 8 hours on four, 400 MHz Sun processors. 

0 input data volume: M 550 MB. Output: M 65 MB. 

a Number of  clusters representing the data by grid cell: 

0 Compare to the image in Section 2, and note that grid cells with large numbers of  data points 

0 ECVQ allocates clusters according to information-theoretic data complexity, not numbers of 

are not necessarily the same ones with lots of  clusters. 

data points. 



5. Summarization Quality 

0 Average error by grid cell, D = N-l C f s l ( N k D k ) ,  relative to  estimated average squared data 
vector norm, ~ - 1  C ~ = ; ’ ( N ~ I I ~ ~ I ~ ~ ) :  

Dx-20-22-Ju1-2002 nh 

o.ooooo >I li: 0.0681633 

0 Relative errors are small; expect computations based on summaries to  be close t o  computations 
based on raw data. 

0 How close depends on the nature of the computation. 

0 We think of the summaries as the “model” and the raw data as the “truth”. Hence, this is a 
model testing problem with a twist: model quality depends on the use to  which it is put. 



6. Sample Analysis 

Can we distinguish between clear and cloudy scenes in the AIRS test data? 

Proposition: since different channels see different levels of  the atmosphere, cloudy data points 
should have relatively homogeneous brightness temperatures across ten of  the eleven channels 
(excluding 20, which observes a t  very high altitude). If the view to  the ground is obscured by a 
cloud, the channels al l  see the same thing and show similar brightness temperatures. If a data 
point represents a clear scene, the channels see different things and will be heterogeneous. 

For each data point, x = (50, q,  x 2 ,  x3, 24,x5, 26, x7, xg, 29, qo)', we can compute the standard 
deviation of the last ten components: 

10 10 1 1 - ,  .9 . 1 -  

\ j=l j = l  

To account for differences of scale, we also examine the coefficient of variation, c = w/Z. 

In each grid cell we compute aveage values of w and c: 

* N  . N  
and C = -  1 Cc,, 1 

n=l  
N 

G=->:w, 
n=l 

N 

where w,, and c, are the standard deviation and coefficient of  variation of the nth data point 
in a grid cell, and N is the number of data points in the grid cell. 

How well can ul and i? be estimated from the summary data? 

Estimates: 

and y k j  is the j t h  element of the kth representative for the grid cell. 



7. Empirical Comparison 

0 Estimated average coefficient of variation of brightness temperatures by grid cell: 

CVArighlncss20-22Jui2002 

0.05000oa 0.00500000 

0 True average coefficient of variation of brightness temperatures by grid cell: 

TmdX-Brig htns~s20-22-Ju12002 



8. Conclusions 

0 For linear functions, calculations using summaries accurately reproduce the truth. 

0 For nonlinear, differentiable functions, we can approximate accuracy using a Taylor Expansion. 
item For arbitrary functions we must look a t  test cases and try to  understand where small 
changes in input data will result in large changes in output. Where large descrepancies between 
the data and the summaries exist, we must beware. "Large" depends on the analysis being 
con d u cted . 

0 In this example we have the luxery of being able to  compute the truth. If that were true 
universally, there would be no need for this methodology to  begin with. However, these results 
give us confidence that similarly summarized three day chunks of AIRS data can be used to  find 
candidate clear scenes by examining brightness temperature heterogeneity. 

0 In those cases where we can't compute the truth globally, we suggest doing so for selected areas. 
The areas shou Id be geographically st ratified. 
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