
Readiness Levels for Spacecraft

Ryan Mackey
Mail Stop 126-147

California Institute of Technology
Jet Propulsion Laboratory

4800 Oak Grove Drive
Pasadena, CA 91 109

Rvan.M.Mackev@iul.nasa.gov
818-354-9659

Information Technologies
Raphael Some

Mail Stop 198-219
California Institute of Technology

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 9 1 109

Raphael.R.Some@ipl.nasa.gov
818-354-1902

Abdullah Aljabri
Mail Stop 198-326

California Institute of Technology
Jet Propulsion Laboratory

4800 Oak Grove Drive
Pasadena, CA 91 109

Abdullah.S.Aliabri@ iDl.nasa.gov
81 8-354-5862

Abstruct- The New Millennium Program (NMP) seeks to
advance space exploration through the maturation of
promising spaceflight technologies. NMP, like many other TABLE OF CONTENTS
organizations, relies upon Technology Readiness Levels 1. INTRODUCTION
(TRLs) as a key indication of technology advancement, and
assesses development progress against this generalized
metric. A given technology’s TIU is based upon our ability
to predict how the technology will perform in various
applications, and therefore depends on the environment in
which the technology has been tested and validated. Testing
begins in the laboratory, advancing through ever-improving
simulations and testbeds, until finally actual in-space
validation is achieved. This process is well understood for
space hardware and has been applied for many years.

Presented in this paper is a modified interpretation of the
traditional TRLs [l] aimed solely at information
technologies. The intent of this new set of definitions is
twofold: First, to enable a definitive’ measurement of
progress among developing information technologies for
spacecraft; and second, to clarify particular challenges and
requirements that must be met as these technologies are
validated in. increasingly realistic environments. The first
goal of this paper reflects NMP’s need to verify clear and
defensible progress of technology development on the path
to spaceflight. The second goal serves to answer the
question of what technologies require validation in space,
and what salient features of the space environment are
important to technology developers. To answer this second
question, we will revisit the notion of the “relevant
environment,” an environment that adequately stresses the
technology to provide sufficient confidence in the results.

This paper includes a direct comparison between the
traditional TRLs and the modified definitions specific to
information technologies. We will also discuss two
representative examples to illustrate this process.

2. OVERVIEW OF TECHNOLOGY READINESS LEVELS

4. SPECIAL ISSUES OF INFORMATION TECHNOLOGIES
3. INFORMATION TECHNOLOGIES vs. SOFTWARE

5. TECHNOLOGY MATURATION vs. IMPLEMENTATION
6. TECHNOLOGY READINESS LEVEL DEFINITIONS
7. EXAMPLES
8. CONCLUSION

1. INTRODUCTION
Technology Readiness Levels are a typical yardstick of
technology maturity - a separate concept from the maturity
of any specific application - used across NASA. This is an
abstract scale, arbitrarily chosen (for NMP purposes) to
range between 1 and 9, that reflects the development high-
water mark of a given technology. The goal of the New
Millennium Program is to support development of new
technologies up to and including its first proof in
spaceflight. , Roughly speaking, NMP is most concerned
with technologies in the middle of the scale, between about
TRL 3 and 7. This refers to the full range of technology
development after the formulation of the method, from first
laboratory experiments and prototypes up to flight
validation.

Information technologies, including not just software and
algorithms, but also tools, methods, and approaches of
information representation used to develop software, are
ever more important to spacecraft and space based science
missions. However, information technologies are generally
difficult to assess in this fashion. The principal difficulty
lies in understanding the environment that is relevant to the
information technology, an environment that differs greatly

0-7803-765 I-X/03/$17.00 0 2003 IEEE I

1

mailto:Rvan.M.Mackev@iul.nasa.gov
mailto:Raphael.R.Some@ipl.nasa.gov
http://iDl.nasa.gov

from that relevant to space hardware. Testing requirements
of temperature, vibration, and radiation tolerance among
others give way to operating system, flight processor
resources, and other limitations or stresses of the
“environment.”

We may pose the question as follows: What constitutes an
advance in spacecraft and spacecraft-associated software,
which we will term Space Systems Information Technology
(SSIT)? How should we interpret the NASA TRL
definitions when applying them to SSIT?

Information technology (and, by inclusion, SSIT) is
fundamentally different from most other technologies in that
other technologies have their foundations in the physical
sciences -- physics, chemistry, and the like. Information
Technology, on the other hand, deals with the representation
and manipulation of information, and has its roots in
mathematics and related disciplines.

Conversely, IT is similar to other technologies in that it is
built on some underlying theory or basic principles. In this
regard, there is also an underlying principle for the
technology, which provides the basis for accurate
predictions of the performance and characteristics of
products built using this technology. Like any other
technology, as the TRL increases and the technology is
matured, our ability to predict the technology performance
characteristics improves. We should therefore be able to
apply a similar list of criteria to evaluate SSIT maturity.

2. OVERVIEW OF TECHNOLOGY READINESS
LEVELS

It is important to distinguish between assessment of
technology and assessment of any specific engineering
effort. Engineering maturity assessment can be thought of
as determining whether or not a device works as it should.
Technology maturity assessment is more concerned with
why a device works, and whether we can estimate how the
device would work if it was modified or placed in a specific
environment. This is more difficult, requiring thorough
prediction and validation of the results of a carefully
constructed technology validation experiment. A
technology with TRL of 7 or higher indicates that the
technology is ready for inclusion in a mission, having been
flight validated at least once, and therefore it is reasonable to
engineer new systems based on the same technology. TRL
must be reassessed only when there is a fundamental change
in the underlying theory or when applying to a radically
different domain.

When we discuss TRL we often speak in terms of a model of
the technology. The model we need predicts how the
technology behaves in specific environments, for instance
how a certain semiconductor technology responds to a range
of temperatures, voltages, radiation dosages, etc., permitting

a system designer to estimate how any potential design
would function in any range of conditions. As the
technology improves and TRL increases, this model must
become better defined and more thoroughly proven through
refinement and testing of the technology. Consequently, the
conditions for attaining each TRL follow this process and
provide guidelines to technology developers.

An example of NASA TRL guidelines [11 is given below in
Figure 1. The most significant element of the TRL
guidelines is the relevant environment, in which
technologies must be tested to reach TRL 5. A relevant
environment is a carefully arranged laboratory environment
that accurately simulates the key difficulties and stresses of
operation in space. It must sufficiently stress the technology
to permit an accurate, defensible estimate of how the
technology will perform in its intended application.

The New Millennium Program is primarily concerned with
TRLs between 3 and 7. Technologies at TRL 3 have been
formulated and tested sufficiently to show that they are
useful, but have not yet been developed.as a complete
prototype. As the technology advances in this middle range,
technology prototypes are completed, tested in increasingly
sophisticated environments, and finally validated in their
first test flight.

3. INFORMATION TECHNOLOGIES vs.
SOFTWARE

IT is a broadly used term describing everything from email
systems to the underlying theories of artificial intelligence.
For our purposes, i.e. for use by NMP in defining
technology development activities, it is important to draw a
distinction not only between SSIT and Hardware, but also
between SSIT and Software. Hardware and software are
merely separate implementation approaches to providing a
specific function. Numerous examples of functions exist
that can be achieved through either all-hardware or all-
software solutions. SSIT is not directly concerned with the
function itself, but rather with the methods used to represent
and manipulate information, and with the approaches, tools
and environment used to develop products that provide the
desired functionality. Thus, while SSIT’s for NASA
missions are inextricably linked with the algorithms they
support, we wish to evaluate the maturity of these methods
separately from the algorithms themselves.

The maturity level of a SSIT is indicated by the reliability
and efficacy of its tools and methods. A SSIT’s maturity
can therefore be determined by the presence and reliability
of methods and tools used to produce products based on this
technology, and by the ability of the practitioner to predict
the performance characteristics of these products. The tools
and methods will vary significantly depending on the
technology, its scope, and its complexity, but in all cases
there will exist some fundamental underlying principles or

2

Basic technology
Research

Research to Prove

--

Feasibility

Technology
Development

r
Technology environment

LEVEL 6 Systemhubsystem model or prototype demonstration in

-
LEVEL 1

LEVEL 2

LEVEL 3

Basic principles observed and reported

Technology concept and/or application formulated

Analytical and experimental critical function and/or
characteristic proof-of-concept

Component and/or breadboard validation in laboratory
environment

Component and/or breadboard validation in a relevant

- -
L-

LEVEL 4

-
LEVEL 5

a relevant environment (Ground or Space)

System prototype demonstration in a space environment

test and demonstration (Ground or Space)

Actual system “flight-proven” through successful
mission operations

LEVEL 7

8 Actual system completed and “flight-qualified” through
System test, Launch &
Operations

LEVEL 9

Figure 1: NASA General TRL Guidelines

theory and a set of tools and methods by which products can
be built and performance characteristics predicted.

The means and methods to predict performance are the
“models” of the SSIT. It is similar in concept to simulations
that predict the behavior of mechanical devices. As the
technology matures, the accuracy and scope of the model,
and concordantly its ability to predict the performance of
software products, must improve as well.

4. SPECIAL ISSUES OF INFORMATION
TECHNOLOGIES

There are two specific issues in SSIT which bear additional
discussion: the relatively isolated and insolated nature of
the SSIT developer with respect to the rest of the spacecraft
and mission development team, and the notion of the SSIT
‘environment.’

A fundamental problem with Spacecraft System Information
Technologies and their use in space system software
development is the lack of understanding, by many
spacecraft developers and managers, of the impact of SSIT
decisions on the rest of the spacecraft, and vice-versa. SSIT
is rarely designed to firm specifications in a like manner to
hardware. Specifications are frequently left in ‘vague terms,

allowing spacecraft designers to exploit software flexibility
to meet specific challenges. Historical evidence points to a
proclivity on the part of spacecraft developers to implement
major changes, using software, with little or no thought to
the resulting impact on software development. It is
noteworthy that a similar problem is emerging in
configurable hardware elements (such as Field
Programmable Gate Arrays, or FPGAs) for next generation
space systems. Similarly, SSIT developers often do not take
into account fundamental differences between the space
system environment and their desktop or laboratory
environment. All parties must therefore pay special
attention to the issue of SSIT impact during the development
process. In terms of SSIT TRL, this implies relatively early
definition of the requiredldesired SSIT environment,
software and hardware requirements, and availability of
tools. The fact that software and “configware” will be used
for last minute changes brings with it a need for any SSIT to
provide rapid validation and environmental simulation
capabilities within their tool suites and methodologies. This
need differs from the standard TRL definitions.
The general TRL Guidelines are focused on the relevant
environment, meant to indicate a testing environment that
adequately captures all of the important environmental
features of actual flight. Relevant environment for SSIT,
and more specifically for the software products developed
using these technologies, is not the physical environment

3

(radiation environment, microgravity, etc.), but rather the
information environment. The SSIThoftware product
environment comprises information flow patterns, the
computing environment (consisting of the instruction set and
architecture of the computing hardware), the operating
system, the network, and the input/output structures.
Environmental stresses include speed of information flow
and inputfoutput operations, boundary values, and resource
limitations such as available central processing unit (CPU)
cycles and memory. The maturation process for SSIT must
consider several facets of the environment, as listed below:

Information Environment - Includes the hardware (CPU,
data bus, etc.), effects of the environment (radiation, lack of
maintenance support) on the hardware such as single event
upsets (SEUs) and other faults, operating system, supporting
libraries, memory and timing constraints, and so on.
Because we must specify these constraints before any
software products can be meaningfully tested, the
information environment must be defined early in
development, at TRL 2.

Spacecraft Environment - Includes all interactions between
SSIT and the spacecraft, such as interfaces, data formats,
time stamps, and commands to SSIT. The spacecraft
environment must be defined and simulated at TRL 5, as
part of the relevant environment.

Development Environment - Contains all software tools,
debuggers, simulators, etc. needed in order to produce a
working SSIT system. An early build of the Development
Environment that is sufficiently populated to produce a
working prototype must be defined at TRL 3 and completed
at TRL 4, coincident with completion of the prototype.
Further completion of the Development Environment is not
required until after the first flight of the SSIT, at TRL 8 and
beyond.

Careful consideration of the SSIT environment also
highlights a peculiarity about on-board vs. on-ground
technologies. Hardware technologies are unambiguously
separable in this regard, but SSIT and its software products
can indeed have a dual role. Certain on-ground software, for
example, does affect spacecraft performance and behavior,
and it is not unreasonable to consider ground and spacecraft
SSIT operating as a coherent, indivisible system.
Additionally, certain processing functions can be transferred
between ground and spacecraft, i.e., can reside in either
location.

Another example would be cooperative software working on
different members of a spacecraft constellation. It is
insufficient to validate only a single part of such a
distributed SSIT system. The SSIT environment includes
all sources of interaction, including ground-based software
and interfaces between different spacecraft, when applicable
to the particular technology. In systems that are easily

decoupled, such interfaces are easy to simulate. However,
cooperative or autonomous SSIT requires special attention
to the end-to-end system, which may include ground-based
systems.

NMP is not focused on validation of ground technologies,
but is concerned with validation of complete space systems.
It is also not unreasonable to propose similar guidelines for
maturation of ground-based IT, but a rigorous definition is
outside the scope of this document.

5. TECHNOLOGY MATURATION vs.
IMPLEMENTATION

Many information technologies that will be new to
spacecraft will not be new to other domains. It is anticipated
that the majority of information technology maturation
efforts for spacecraft will be simple cases of technology
infusion rather than development.

Because the same requirements on testing and verification
apply to infusion as to development, the same guidelines are
applicable in either case. In terms of technology maturation
and validation, infusion can be considered a case of
expanding and validating the bounds of the technology’s
model and can often be characterized as determining and
validating the technologies performance characteristics in a
new (relevant) environment and with extended or new
environmental stresses. Technologies ready for infusion are
typically much further along in development, greatly
reducing the time and effort needed to validate tools and
benchmark performance. There are also technologies that
have been qualified on aircraft or in other stressful
environments, but not for spacecraft.

Depending on the technology and the scope of its testing and
validation, we may start technology infusion efforts at
relatively high TRLs, possibly as high as 5 in the case of
technology validated on aircraft. In the majority of cases,
we will want to return to low TRLs, but progression through
the early stages should be rapid as space-specific
documentation and portinghesting in the new environment is
completed.

To illustrate this effect, an example of space application of
an existing mature information technology is given in
Section 7.

6. TECHNOLOGY READINESS LEVEL
DEFINITIONS

A general list of TRL requirements intended for Information
Technologies is given below. This defines the specific tests
that must be passed before promotion to the next TRL.

4

TRL 1 - Identifiedtinvented and documented a useful
information technology with a qualitative estimate of
expected benefit. Basic functional relationships of a
potential application formulated and shown to be compatible
with reasonable processing constraints.

TRL 2 - Completed a breakdown of information technology
into its underlying components and analyzed requirements
and interactions with other systems. Defined and
documented the relevant IT execution environment.
Preliminary design assessment confirmed compatibility with
the expected IT environment,

TRL 3 - Key components of IT prototyped to prove
scientific feasibility. Successful preliminary tests of critical
functions demonstrated and documented. Experiments with
small representative data sets conducted. IT development
environment and development tools required to complete
prototype defined and documented.

TRL 4 - Prototype completed on laboratory hardware and
tested in a realistic environment simulation. Experiments
conducted with full-scale problems or data sets in a
laboratory environment and results of tests documented. IT
development environment completed as needed for the
prototype. A model of IT performance, adequate for
prediction of performance in the intended space
environment, must be documented as a result of these tests.

TRL 5 - Prototype refined into a system and tested on
simulated or flight-equivalent hardware. Interaction
environment, including interfaces to other systems, defined
and included in the testing environment. Rigorous stress
testing completed in multiple realistic environments and
documented. Performance of the IT in the relevant
environment must be documented and shown to be
consistent with its performance model.

TRL 6 - System ported from breadboard hardware testbeds
to flight hardware and tested with other systems in realistic
simulated environment scenarios. IT tested in complete
relevant execution environment. Engineering feasibility
fully demonstrated.

TRL 7 - Information technology validated in space.
Adequate documentation prepared for transfer from
developers to full operations engineering process team.

TRL 8 - Development environment completed and
validated. Approved by an independent verification and
validation (IV+V) team.

TRL 9 - Documentation of the information technology
completed, approved and issued. Operational limits of the
software are understood, documented and consistent with
the operational mission requirements

7. EXAMPLES

We will consider two examples of IT for space systems from
inception through first flight. The first example follows
infusion of an existing information technology (Object
Oriented Programming) into a space application. The
second studies development of a totally new technology (a
hypothetical autonomous planner based on heuristic
principles) intended for spaceflight.

Example I - Object Oriented Programming (OOP) for the
Cassini Attitude and Articulation Control System (AACS)

OOP is based on the notion that it is possible and useful to
encapsulate information and to treat the resultant
information as an object. OOP then goes on to define types
of properties of objects, possible manipulations of objects,
and potential relationships between objects. In actuality,
OOP is definition of different classes or types of knowledge,
how items of knowledge can be packaged, handled,
manipulated and connected to form larger knowledge
entities, and handling systems.

This example discusses steps taken to mature the OOP
approach for the Cassini AACS control software. Because
the control software in itself does not represent new
technology, we can clearly show the maturity progression of
the OOP approach as applied to space flight by itself. OOP
as a paradigm available to computer scientists in general was
already matured at the start of this example, but software
designed with OOP had not been space-qualified.

TRL I - OOP formally identified as an off-the-shelf
approach that might be useful for control software. The
team produced documentation including a definition of the
concept of OOP as applied to generic, COTS, non-flight
software, and a qualitative estimate of the expected benefit.

TRL 2 - The AACS team produced a high-level breakdown
of the software functions into OOP principles, as illustrated
in Figure 2 below. The team documented its rough
approach and determined that no obvious incompatibilities
existed. The team identified the specific performance
requirements of the software (viz. relevant environment),
including target processor, language, operating system,
timing requirements, and interfaces. The team also
quantified the expected benefits of the approach.

TRL 3 - The team produced portions of the AACS software
coded in the OOP paradigm. These portions were sufficient
to test the end-to-end data flow and check critical functions.
The results of these tests were documented to prove
feasibility of the software approach.

5

CASSINI AACS FLIGHT SOFTWARE ARCHITECTURE
LEVEL 0

I 1750A Operating System]
L .

Flight Software

I L4"n"ner - 1 I h" I I I - C . , l . l , I
Fun.i&e .

I I I I1 ,4W& Attitude 1

Bus Interfaces: PIU, IOU

Figure 2: Cassini AACS Software Breakdown (after
Hackney, et. al. [2])

An example critical function is given below in Fig. 3. These
functions were not yet integrated into a completed prototype,
but were collectively defined at a level sufficient to
demonstrate all critical functions of the ACS software.

TRL 4 - The team produced a prototype incorporating all
AACS software functions. This prototype was tested in a
laboratory environment, using non-flight computers,
simplified interfaces, and without strict timing requirements.
This environment was the Flight Software Development
System (FSDS). The test and its results were documented.
These tests provided sufficient information for a defensible
performance estimate of the software, allowing prediction of
its performance in the relevant environment.

TRL 5 - The AACS software was tested in the relevant
environment. This implies running in the correct language
and on the correct operating system, using actual flight
software interfaces and drivers to hardware and other flight
software (such as the Command and Data Subsystem, or
CDS), and with strict timing requirements. The test was
conducted using a processor and computing hardware
equivalent to flight articles. These tests included "stressful
cases" designed to measure software performance at the
corners of the operating envelope.

TRL 6 - Software was tested in a complete system
simulation. This includes the flight processor and operating
system, and all hardware-in-the-loop. This facility was the
Integration and Test Laboratory (I n) . The test program
and its results were documented.

TRL 7 - Software is tested in space in the early days of the
Cassini mission.

Object Diagram
Attitude Commander (ACM)

Estimator
ATE

Figure 3: Example critical function prototype (after
Hackney, et. al. [2])

.And_Raa

Example 2 - Development of a Heuristic Planner

This example considers development stages of a typical
mission planner. Planners are autonomy components that
are responsible for generating sequences of events for
spacecraft to follow in order to achieve certain goals. We
will consider a planner based on entirely heuristic principles.

TRL I - Observed the principle that well-crafted heuristics
can be used for a more efficient planner. Documented the
basic approach and made a qualitative assessment of its
benefit.

TRL 2 - Defined structure of a planner for spacecraft
management. Identified the relevant environment (e.g.
VxWorks, RAD750 processor, specific memory and timing
targets, or at least the notion of a real-time operating system
(RTOS), a reduced instruction set computer (RISC) and
generalized performance limits on expected space qualified
hardware to be available at the earliest envisioned date of
mission insertion) and ascertained there were no intrinsic
incompatibilities between the environment and the
technology. Quantified benefits to cheaper operations,
increased science data return, etc. given specified
assumptions about the spacecraft.

It is important to note that environmental requirements
should be defined early in development, here at TRL 2, in
order to retard "creeping" development costs as the
technology matures. It is all too easy to relax the relevant
environment in response to difficulties or uncertainties in
technology development. While the relevant environment
will be clarified with respect to interactions on-board the
spacecraft (at TRL 5, after a laboratory prototype has been
validated), the IT execution environment must be fully
specified at TRL 2.

6

TRL 3 - Constructed a preliminary heuristic temporal
database. Completed key elements of an inference engine
operating on the database. End-to-end experiments
conducted on partially populated database successfully
generate specific plans. The scope and results of these tests
are documented.

At TRL 3, both the method and the underlying IT
components need not be fully developed - elements of the
process may be done “by hand,” and that includes the
development environment. The technology provider may
meet the IT needs through handmade retrofits of existing
tools, such as using an off-the-shelf C language compiler
and rough application-specific subroutines to simulate the
particular development environment needed for the planner.
The technology provider does not need to create the
required development environment at this TRL. However,
the finished product and development process must be
repeatable, and the provider must document the functional
requirements of the proposed IT development environment.
Therefore, at TRL 3, both the IT execution and development
environments must be fully specified.

TRL 4 - Laboratory environment prototype completed.
Prototype tested with a realistic segment of mission scenario
and converged upon a plan result meeting all constraints
within the predicted time. The test cases may be non-
stressing at this time but must be realistic. These tests
should provide the basis for a performance estimate
sufficiently detailed to predict planner performance in the
relevant environment. The performance prediction method,
model, simulation or equations is documented and
comprises a performance prediction model.

At TRL 4, the underlying IT development environment
required for the finished product must exist, but only at a
level of coverage and refinement sufficient to complete the
breadboard for this specific technology. Optimization,
expansion, and population of the development environment
sufficient to broadly apply the underlying IT is not required
until after the first flight of this specific product (TRL 7).

TRL 5 - Advanced prototype completed and tested in the
relevant environment. The relevant environment is refined
to accurately represent interactions with other spacecraft
subsystems, and these interactions are documented. This
prototype planner is stressed with difficult scenarios,
including a wide variety of boundary conditions and subtly
ambiguous test cases, and is demonstrated to produce
correct and predictable results in a predictable length of
time. The tests include a full simulation of the flight
environment and simulated interacting components with
equivalent interfaces. The testbed imposes realistic memory
and timing requirements and is conducted on an equivalent
flight processor. Results of these tests are documented and
the predictive performance model is updated and validated
for the relevant environment.

At TRL 5 we have finalized the environment specification of
the technology, including the IT environment (from TRL 2),
the development environment (from TRL 3), and lastly the
spacecraft environment as pertains to interactions with
spacecraft subsystems (TRL 5).

TRL 6 - Full brassboard simulation of the planner, using
flight processors and computing environment, and all
interfaces to other systems is tested and verified. Results of
these tests are documented and shown to be consistent with
expectations from the prototype and the predictive
performance model.

TRL 7 - First flight of the planner technology, possibly in a
shadow-mode or end-of-mission experiment on board the
host vehicle. Operation in actual environment, under real
conditions for a significant length of time meets
performance model predictions.

8. CONCLUSION

This paper outlines a new standard for assessment of
spacecraft information technologies, historically a difficult
task to manage. As information technologies mature and
become increasingly complex in spacecraft, NASA and the
New Millennium Program must concentrate on management
and development of such technologies for space. Our
modified system of Technology Readiness Levels sets
concrete gates for developers of information technologies,
providing guidance above and beyond the standard TRL
definitions.

As we have seen, the principal difference is in the question
of environment. Information technologies must be tested in
the relevant information environment on the path to
spaceflight, representing computer processors, operating
systems, interfaces, and control issues typically found in
spacecraft. This is a considerable departure from the
physical space environment used to test ordinary
technologies. Nonetheless, with careful consideration the
path of information technology development can be handled
in a similar fashion.

REFERENCES
[13 J. Mankins, “Technology Readiness Levels,” NASA
White Paper, April 1995.

[2] J. Hackney, D. Bernard, R. Rasmussen, “The Cassini
Spacecraft: Object Oriented Flight Control Software,”
Proceedings of the 161h Annual American Astronautical
Society Guidance and Control Conference, February 6- 10,
1993.

7

Ryan Mackey received his B.A. degree from the University
of California at Santa Cruz (1993) for Mathematics and
Physics, and went on to an M.S. (1994) and Eng. (1997) in
Aeronautics at Caltech. He is presently a senior researcher
and charter member of the Ultracomputing Technologies
Research Group at the Jet Propulsion Laboratory. His
research centers upon revolutionary computing methods
and technologies for advanced machine autonomy,
specifically deep space missions, UAVs and maintainable
aerospace vehicles. His interests also include quantum- and
biologically-inspired computing.

Rafi Some has been in the aerospace and computing
industry for 27 years, with the lastfive at the Jet Propulsion
Laboratory. He has worked to develop varied computing
systems and technologies, including spacecrafr avionics.
He received his B.S. in Electrical Engineering from Rutgers
University. His current duties include staff technologist for
NASA’s New Millennium Program.

Abdullah Aljabri supervises the Autonomy Software
Technology Infusion Group at the Jet Propulsion
Laboratory, and also serves as staff technologist for NASA’s
New Millennium Program. He received a B. Tech in
Aeronautical Engineering and Design from the
Loughborough University of Technology and M.S. in
Aerospace Engineering from Penn State. His efforts include
the Remote Agent, first $own on the DS-1 Spacecrafr, and
implementation of advanced computing methods in space
borne systems.

8

