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Abstruct- The New Millennium Program (NMP) seeks to 
advance space exploration through the maturation of 
promising spaceflight technologies. NMP, like many other TABLE OF CONTENTS 
organizations, relies upon Technology Readiness Levels 1. INTRODUCTION 
(TRLs) as a key indication of technology advancement, and 
assesses development progress against this generalized 
metric. A given technology’s TIU is based upon our ability 
to predict how the technology will perform in various 
applications, and therefore depends on the environment in 
which the technology has been tested and validated. Testing 
begins in the laboratory, advancing through ever-improving 
simulations and testbeds, until finally actual in-space 
validation is achieved. This process is well understood for 
space hardware and has been applied for many years. 

Presented in this paper is a modified interpretation of the 
traditional TRLs [ l ]  aimed solely at information 
technologies. The intent of this new set of definitions is 
twofold: First, to enable a definitive’ measurement of 
progress among developing information technologies for 
spacecraft; and second, to clarify particular challenges and 
requirements that must be met as these technologies are 
validated in. increasingly realistic environments. The first 
goal of this paper reflects NMP’s need to verify clear and 
defensible progress of technology development on the path 
to spaceflight. The second goal serves to answer the 
question of what technologies require validation in space, 
and what salient features of the space environment are 
important to technology developers. To answer this second 
question, we will revisit the notion of the “relevant 
environment,” an environment that adequately stresses the 
technology to provide sufficient confidence in the results. 

This paper includes a direct comparison between the 
traditional TRLs and the modified definitions specific to 
information technologies. We will also discuss two 
representative examples to illustrate this process. 

2. OVERVIEW OF TECHNOLOGY READINESS LEVELS 

4. SPECIAL ISSUES OF INFORMATION TECHNOLOGIES 
3. INFORMATION TECHNOLOGIES vs. SOFTWARE 

5.  TECHNOLOGY MATURATION vs. IMPLEMENTATION 
6. TECHNOLOGY READINESS LEVEL DEFINITIONS 
7. EXAMPLES 
8. CONCLUSION 

1. INTRODUCTION 
Technology Readiness Levels are a typical yardstick of 
technology maturity - a separate concept from the maturity 
of any specific application - used across NASA. This is an 
abstract scale, arbitrarily chosen (for NMP purposes) to 
range between 1 and 9, that reflects the development high- 
water mark of a given technology. The goal of the New 
Millennium Program is to support development of new 
technologies up to and including its first proof in 
spaceflight. , Roughly speaking, NMP is most concerned 
with technologies in the middle of the scale, between about 
TRL 3 and 7. This refers to the full range of technology 
development after the formulation of the method, from first 
laboratory experiments and prototypes up to flight 
validation. 

Information technologies, including not just software and 
algorithms, but also tools, methods, and approaches of 
information representation used to develop software, are 
ever more important to spacecraft and space based science 
missions. However, information technologies are generally 
difficult to assess in this fashion. The principal difficulty 
lies in understanding the environment that is relevant to the 
information technology, an environment that differs greatly 
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from that relevant to space hardware. Testing requirements 
of temperature, vibration, and radiation tolerance among 
others give way to operating system, flight processor 
resources, and other limitations or stresses of the 
“environment.” 

We may pose the question as follows: What constitutes an 
advance in spacecraft and spacecraft-associated software, 
which we will term Space Systems Information Technology 
(SSIT)? How should we interpret the NASA TRL 
definitions when applying them to SSIT? 

Information technology (and, by inclusion, SSIT) is 
fundamentally different from most other technologies in that 
other technologies have their foundations in the physical 
sciences -- physics, chemistry, and the like. Information 
Technology, on the other hand, deals with the representation 
and manipulation of information, and has its roots in 
mathematics and related disciplines. 

Conversely, IT is similar to other technologies in that it is 
built on some underlying theory or basic principles. In this 
regard, there is also an underlying principle for the 
technology, which provides the basis for accurate 
predictions of the performance and characteristics of 
products built using this technology. Like any other 
technology, as the TRL increases and the technology is 
matured, our ability to predict the technology performance 
characteristics improves. We should therefore be able to 
apply a similar list of criteria to evaluate SSIT maturity. 

2. OVERVIEW OF TECHNOLOGY READINESS 
LEVELS 

It is important to distinguish between assessment of 
technology and assessment of any specific engineering 
effort. Engineering maturity assessment can be thought of 
as determining whether or not a device works as it should. 
Technology maturity assessment is more concerned with 
why a device works, and whether we can estimate how the 
device would work if it was modified or placed in a specific 
environment. This is more difficult, requiring thorough 
prediction and validation of the results of a carefully 
constructed technology validation experiment. A 
technology with TRL of 7 or higher indicates that the 
technology is ready for inclusion in a mission, having been 
flight validated at least once, and therefore it is reasonable to 
engineer new systems based on the same technology. TRL 
must be reassessed only when there is a fundamental change 
in the underlying theory or when applying to a radically 
different domain. 

When we discuss TRL we often speak in terms of a model of 
the technology. The model we need predicts how the 
technology behaves in specific environments, for instance 
how a certain semiconductor technology responds to a range 
of temperatures, voltages, radiation dosages, etc., permitting 

a system designer to estimate how any potential design 
would function in any range of conditions. As the 
technology improves and TRL increases, this model must 
become better defined and more thoroughly proven through 
refinement and testing of the technology. Consequently, the 
conditions for attaining each TRL follow this process and 
provide guidelines to technology developers. 

An example of NASA TRL guidelines [ 11 is given below in 
Figure 1. The most significant element of the TRL 
guidelines is the relevant environment, in which 
technologies must be tested to reach TRL 5.  A relevant 
environment is a carefully arranged laboratory environment 
that accurately simulates the key difficulties and stresses of 
operation in space. It must sufficiently stress the technology 
to permit an accurate, defensible estimate of how the 
technology will perform in its intended application. 

The New Millennium Program is primarily concerned with 
TRLs between 3 and 7. Technologies at TRL 3 have been 
formulated and tested sufficiently to show that they are 
useful, but have not yet been developed.as a complete 
prototype. As the technology advances in this middle range, 
technology prototypes are completed, tested in increasingly 
sophisticated environments, and finally validated in their 
first test flight. 

3. INFORMATION TECHNOLOGIES vs. 
SOFTWARE 

IT is a broadly used term describing everything from email 
systems to the underlying theories of artificial intelligence. 
For our purposes, i.e. for use by NMP in defining 
technology development activities, it is important to draw a 
distinction not only between SSIT and Hardware, but also 
between SSIT and Software. Hardware and software are 
merely separate implementation approaches to providing a 
specific function. Numerous examples of functions exist 
that can be achieved through either all-hardware or all- 
software solutions. SSIT is not directly concerned with the 
function itself, but rather with the methods used to represent 
and manipulate information, and with the approaches, tools 
and environment used to develop products that provide the 
desired functionality. Thus, while SSIT’s for NASA 
missions are inextricably linked with the algorithms they 
support, we wish to evaluate the maturity of these methods 
separately from the algorithms themselves. 

The maturity level of a SSIT is indicated by the reliability 
and efficacy of its tools and methods. A SSIT’s maturity 
can therefore be determined by the presence and reliability 
of methods and tools used to produce products based on this 
technology, and by the ability of the practitioner to predict 
the performance characteristics of these products. The tools 
and methods will vary significantly depending on the 
technology, its scope, and its complexity, but in all cases 
there will exist some fundamental underlying principles or 
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Figure 1: NASA General TRL Guidelines 

theory and a set of tools and methods by which products can 
be built and performance characteristics predicted. 

The means and methods to predict performance are the 
“models” of the SSIT. It is similar in concept to simulations 
that predict the behavior of mechanical devices. As the 
technology matures, the accuracy and scope of the model, 
and concordantly its ability to predict the performance of 
software products, must improve as well. 

4. SPECIAL ISSUES OF INFORMATION 
TECHNOLOGIES 

There are two specific issues in SSIT which bear additional 
discussion: the relatively isolated and insolated nature of 
the SSIT developer with respect to the rest of the spacecraft 
and mission development team, and the notion of the SSIT 
‘environment.’ 

A fundamental problem with Spacecraft System Information 
Technologies and their use in space system software 
development is the lack of understanding, by many 
spacecraft developers and managers, of the impact of SSIT 
decisions on the rest of the spacecraft, and vice-versa. SSIT 
is rarely designed to firm specifications in a like manner to 
hardware. Specifications are frequently left in ‘vague terms, 

allowing spacecraft designers to exploit software flexibility 
to meet specific challenges. Historical evidence points to a 
proclivity on the part of spacecraft developers to implement 
major changes, using software, with little or no thought to 
the resulting impact on software development. It is 
noteworthy that a similar problem is emerging in 
configurable hardware elements (such as Field 
Programmable Gate Arrays, or FPGAs) for next generation 
space systems. Similarly, SSIT developers often do not take 
into account fundamental differences between the space 
system environment and their desktop or laboratory 
environment. All parties must therefore pay special 
attention to the issue of SSIT impact during the development 
process. In terms of SSIT TRL, this implies relatively early 
definition of the requiredldesired SSIT environment, 
software and hardware requirements, and availability of 
tools. The fact that software and “configware” will be used 
for last minute changes brings with it a need for any SSIT to 
provide rapid validation and environmental simulation 
capabilities within their tool suites and methodologies. This 
need differs from the standard TRL definitions. 
The general TRL Guidelines are focused on the relevant 
environment, meant to indicate a testing environment that 
adequately captures all of the important environmental 
features of actual flight. Relevant environment for SSIT, 
and more specifically for the software products developed 
using these technologies, is not the physical environment 
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(radiation environment, microgravity, etc.), but rather the 
information environment. The SSIThoftware product 
environment comprises information flow patterns, the 
computing environment (consisting of the instruction set and 
architecture of the computing hardware), the operating 
system, the network, and the input/output structures. 
Environmental stresses include speed of information flow 
and inputfoutput operations, boundary values, and resource 
limitations such as available central processing unit (CPU) 
cycles and memory. The maturation process for SSIT must 
consider several facets of the environment, as listed below: 

Information Environment - Includes the hardware (CPU, 
data bus, etc.), effects of the environment (radiation, lack of 
maintenance support) on the hardware such as single event 
upsets (SEUs) and other faults, operating system, supporting 
libraries, memory and timing constraints, and so on. 
Because we must specify these constraints before any 
software products can be meaningfully tested, the 
information environment must be defined early in 
development, at TRL 2. 

Spacecraft Environment - Includes all interactions between 
SSIT and the spacecraft, such as interfaces, data formats, 
time stamps, and commands to SSIT. The spacecraft 
environment must be defined and simulated at TRL 5, as 
part of the relevant environment. 

Development Environment - Contains all software tools, 
debuggers, simulators, etc. needed in order to produce a 
working SSIT system. An early build of the Development 
Environment that is sufficiently populated to produce a 
working prototype must be defined at TRL 3 and completed 
at TRL 4, coincident with completion of the prototype. 
Further completion of the Development Environment is not 
required until after the first flight of the SSIT, at TRL 8 and 
beyond. 

Careful consideration of the SSIT environment also 
highlights a peculiarity about on-board vs. on-ground 
technologies. Hardware technologies are unambiguously 
separable in this regard, but SSIT and its software products 
can indeed have a dual role. Certain on-ground software, for 
example, does affect spacecraft performance and behavior, 
and it is not unreasonable to consider ground and spacecraft 
SSIT operating as a coherent, indivisible system. 
Additionally, certain processing functions can be transferred 
between ground and spacecraft, i.e., can reside in either 
location. 

Another example would be cooperative software working on 
different members of a spacecraft constellation. It is 
insufficient to validate only a single part of such a 
distributed SSIT system. The SSIT environment includes 
all sources of interaction, including ground-based software 
and interfaces between different spacecraft, when applicable 
to the particular technology. In systems that are easily 

decoupled, such interfaces are easy to simulate. However, 
cooperative or autonomous SSIT requires special attention 
to the end-to-end system, which may include ground-based 
systems. 

NMP is not focused on validation of ground technologies, 
but is concerned with validation of complete space systems. 
It is also not unreasonable to propose similar guidelines for 
maturation of ground-based IT, but a rigorous definition is 
outside the scope of this document. 

5. TECHNOLOGY MATURATION vs. 
IMPLEMENTATION 

Many information technologies that will be new to 
spacecraft will not be new to other domains. It is anticipated 
that the majority of information technology maturation 
efforts for spacecraft will be simple cases of technology 
infusion rather than development. 

Because the same requirements on testing and verification 
apply to infusion as to development, the same guidelines are 
applicable in either case. In terms of technology maturation 
and validation, infusion can be considered a case of 
expanding and validating the bounds of the technology’s 
model and can often be characterized as determining and 
validating the technologies performance characteristics in a 
new (relevant) environment and with extended or new 
environmental stresses. Technologies ready for infusion are 
typically much further along in development, greatly 
reducing the time and effort needed to validate tools and 
benchmark performance. There are also technologies that 
have been qualified on aircraft or in other stressful 
environments, but not for spacecraft. 

Depending on the technology and the scope of its testing and 
validation, we may start technology infusion efforts at 
relatively high TRLs, possibly as high as 5 in the case of 
technology validated on aircraft. In the majority of cases, 
we will want to return to low TRLs, but progression through 
the early stages should be rapid as space-specific 
documentation and portinghesting in the new environment is 
completed. 

To illustrate this effect, an example of space application of 
an existing mature information technology is given in 
Section 7. 

6. TECHNOLOGY READINESS LEVEL 
DEFINITIONS 

A general list of TRL requirements intended for Information 
Technologies is given below. This defines the specific tests 
that must be passed before promotion to the next TRL. 
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TRL 1 - Identifiedtinvented and documented a useful 
information technology with a qualitative estimate of 
expected benefit. Basic functional relationships of a 
potential application formulated and shown to be compatible 
with reasonable processing constraints. 

TRL 2 - Completed a breakdown of information technology 
into its underlying components and analyzed requirements 
and interactions with other systems. Defined and 
documented the relevant IT execution environment. 
Preliminary design assessment confirmed compatibility with 
the expected IT environment, 

TRL 3 - Key components of IT prototyped to prove 
scientific feasibility. Successful preliminary tests of critical 
functions demonstrated and documented. Experiments with 
small representative data sets conducted. IT development 
environment and development tools required to complete 
prototype defined and documented. 

TRL 4 - Prototype completed on laboratory hardware and 
tested in a realistic environment simulation. Experiments 
conducted with full-scale problems or data sets in a 
laboratory environment and results of tests documented. IT 
development environment completed as needed for the 
prototype. A model of IT performance, adequate for 
prediction of performance in the intended space 
environment, must be documented as a result of these tests. 

TRL 5 - Prototype refined into a system and tested on 
simulated or flight-equivalent hardware. Interaction 
environment, including interfaces to other systems, defined 
and included in the testing environment. Rigorous stress 
testing completed in multiple realistic environments and 
documented. Performance of the IT in the relevant 
environment must be documented and shown to be 
consistent with its performance model. 

TRL 6 - System ported from breadboard hardware testbeds 
to flight hardware and tested with other systems in realistic 
simulated environment scenarios. IT tested in complete 
relevant execution environment. Engineering feasibility 
fully demonstrated. 

TRL 7 - Information technology validated in space. 
Adequate documentation prepared for transfer from 
developers to full operations engineering process team. 

TRL 8 - Development environment completed and 
validated. Approved by an independent verification and 
validation (IV+V) team. 

TRL 9 - Documentation of the information technology 
completed, approved and issued. Operational limits of the 
software are understood, documented and consistent with 
the operational mission requirements 

7. EXAMPLES 

We will consider two examples of IT for space systems from 
inception through first flight. The first example follows 
infusion of an existing information technology (Object 
Oriented Programming) into a space application. The 
second studies development of a totally new technology (a 
hypothetical autonomous planner based on heuristic 
principles) intended for spaceflight. 

Example I - Object Oriented Programming (OOP) for the 
Cassini Attitude and Articulation Control System (AACS) 

OOP is based on the notion that it is possible and useful to 
encapsulate information and to treat the resultant 
information as an object. OOP then goes on to define types 
of properties of objects, possible manipulations of objects, 
and potential relationships between objects. In actuality, 
OOP is definition of different classes or types of knowledge, 
how items of knowledge can be packaged, handled, 
manipulated and connected to form larger knowledge 
entities, and handling systems. 

This example discusses steps taken to mature the OOP 
approach for the Cassini AACS control software. Because 
the control software in itself does not represent new 
technology, we can clearly show the maturity progression of 
the OOP approach as applied to space flight by itself. OOP 
as a paradigm available to computer scientists in general was 
already matured at the start of this example, but software 
designed with OOP had not been space-qualified. 

TRL I - OOP formally identified as an off-the-shelf 
approach that might be useful for control software. The 
team produced documentation including a definition of the 
concept of OOP as applied to generic, COTS, non-flight 
software, and a qualitative estimate of the expected benefit. 

TRL 2 - The AACS team produced a high-level breakdown 
of the software functions into OOP principles, as illustrated 
in Figure 2 below. The team documented its rough 
approach and determined that no obvious incompatibilities 
existed. The team identified the specific performance 
requirements of the software (viz. relevant environment), 
including target processor, language, operating system, 
timing requirements, and interfaces. The team also 
quantified the expected benefits of the approach. 

TRL 3 - The team produced portions of the AACS software 
coded in the OOP paradigm. These portions were sufficient 
to test the end-to-end data flow and check critical functions. 
The results of these tests were documented to prove 
feasibility of the software approach. 
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Figure 2: Cassini AACS Software Breakdown (after 
Hackney, et. al. [2]) 

An example critical function is given below in Fig. 3. These 
functions were not yet integrated into a completed prototype, 
but were collectively defined at a level sufficient to 
demonstrate all critical functions of the ACS software. 

TRL 4 - The team produced a prototype incorporating all 
AACS software functions. This prototype was tested in a 
laboratory environment, using non-flight computers, 
simplified interfaces, and without strict timing requirements. 
This environment was the Flight Software Development 
System (FSDS). The test and its results were documented. 
These tests provided sufficient information for a defensible 
performance estimate of the software, allowing prediction of 
its performance in the relevant environment. 

TRL 5 - The AACS software was tested in the relevant 
environment. This implies running in the correct language 
and on the correct operating system, using actual flight 
software interfaces and drivers to hardware and other flight 
software (such as the Command and Data Subsystem, or 
CDS), and with strict timing requirements. The test was 
conducted using a processor and computing hardware 
equivalent to flight articles. These tests included "stressful 
cases" designed to measure software performance at the 
corners of the operating envelope. 

TRL 6 - Software was tested in a complete system 
simulation. This includes the flight processor and operating 
system, and all hardware-in-the-loop. This facility was the 
Integration and Test Laboratory ( I n ) .  The test program 
and its results were documented. 

TRL 7 - Software is tested in space in the early days of the 
Cassini mission. 

Object Diagram 
Attitude Commander (ACM) 

Estimator 
ATE 

Figure 3: Example critical function prototype (after 
Hackney, et. al. [ 2 ] )  
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Example 2 - Development of a Heuristic Planner 

This example considers development stages of a typical 
mission planner. Planners are autonomy components that 
are responsible for generating sequences of events for 
spacecraft to follow in order to achieve certain goals. We 
will consider a planner based on entirely heuristic principles. 

TRL I - Observed the principle that well-crafted heuristics 
can be used for a more efficient planner. Documented the 
basic approach and made a qualitative assessment of its 
benefit. 

TRL 2 - Defined structure of a planner for spacecraft 
management. Identified the relevant environment (e.g. 
VxWorks, RAD750 processor, specific memory and timing 
targets, or at least the notion of a real-time operating system 
(RTOS), a reduced instruction set computer (RISC) and 
generalized performance limits on expected space qualified 
hardware to be available at the earliest envisioned date of 
mission insertion) and ascertained there were no intrinsic 
incompatibilities between the environment and the 
technology. Quantified benefits to cheaper operations, 
increased science data return, etc. given specified 
assumptions about the spacecraft. 

It is important to note that environmental requirements 
should be defined early in development, here at TRL 2, in 
order to retard "creeping" development costs as the 
technology matures. It is all too easy to relax the relevant 
environment in response to difficulties or uncertainties in 
technology development. While the relevant environment 
will be clarified with respect to interactions on-board the 
spacecraft (at TRL 5, after a laboratory prototype has been 
validated), the IT execution environment must be fully 
specified at TRL 2. 
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TRL 3 - Constructed a preliminary heuristic temporal 
database. Completed key elements of an inference engine 
operating on the database. End-to-end experiments 
conducted on partially populated database successfully 
generate specific plans. The scope and results of these tests 
are documented. 

At TRL 3, both the method and the underlying IT 
components need not be fully developed - elements of the 
process may be done “by hand,” and that includes the 
development environment. The technology provider may 
meet the IT needs through handmade retrofits of existing 
tools, such as using an off-the-shelf C language compiler 
and rough application-specific subroutines to simulate the 
particular development environment needed for the planner. 
The technology provider does not need to create the 
required development environment at this TRL. However, 
the finished product and development process must be 
repeatable, and the provider must document the functional 
requirements of the proposed IT development environment. 
Therefore, at TRL 3, both the IT execution and development 
environments must be fully specified. 

TRL 4 - Laboratory environment prototype completed. 
Prototype tested with a realistic segment of mission scenario 
and converged upon a plan result meeting all constraints 
within the predicted time. The test cases may be non- 
stressing at this time but must be realistic. These tests 
should provide the basis for a performance estimate 
sufficiently detailed to predict planner performance in the 
relevant environment. The performance prediction method, 
model, simulation or equations is documented and 
comprises a performance prediction model. 

At TRL 4, the underlying IT development environment 
required for the finished product must exist, but only at a 
level of coverage and refinement sufficient to complete the 
breadboard for this specific technology. Optimization, 
expansion, and population of the development environment 
sufficient to broadly apply the underlying IT is not required 
until after the first flight of this specific product (TRL 7). 

TRL 5 - Advanced prototype completed and tested in the 
relevant environment. The relevant environment is refined 
to accurately represent interactions with other spacecraft 
subsystems, and these interactions are documented. This 
prototype planner is stressed with difficult scenarios, 
including a wide variety of boundary conditions and subtly 
ambiguous test cases, and is demonstrated to produce 
correct and predictable results in a predictable length of 
time. The tests include a full simulation of the flight 
environment and simulated interacting components with 
equivalent interfaces. The testbed imposes realistic memory 
and timing requirements and is conducted on an equivalent 
flight processor. Results of these tests are documented and 
the predictive performance model is updated and validated 
for the relevant environment. 

At TRL 5 we have finalized the environment specification of 
the technology, including the IT environment (from TRL 2), 
the development environment (from TRL 3), and lastly the 
spacecraft environment as pertains to interactions with 
spacecraft subsystems (TRL 5). 

TRL 6 - Full brassboard simulation of the planner, using 
flight processors and computing environment, and all 
interfaces to other systems is tested and verified. Results of 
these tests are documented and shown to be consistent with 
expectations from the prototype and the predictive 
performance model. 

TRL 7 - First flight of the planner technology, possibly in a 
shadow-mode or end-of-mission experiment on board the 
host vehicle. Operation in actual environment, under real 
conditions for a significant length of time meets 
performance model predictions. 

8. CONCLUSION 

This paper outlines a new standard for assessment of 
spacecraft information technologies, historically a difficult 
task to manage. As information technologies mature and 
become increasingly complex in spacecraft, NASA and the 
New Millennium Program must concentrate on management 
and development of such technologies for space. Our 
modified system of Technology Readiness Levels sets 
concrete gates for developers of information technologies, 
providing guidance above and beyond the standard TRL 
definitions. 

As we have seen, the principal difference is in the question 
of environment. Information technologies must be tested in 
the relevant information environment on the path to 
spaceflight, representing computer processors, operating 
systems, interfaces, and control issues typically found in 
spacecraft. This is a considerable departure from the 
physical space environment used to test ordinary 
technologies. Nonetheless, with careful consideration the 
path of information technology development can be handled 
in a similar fashion. 
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