
1

Java for Flight Software
Edward G. Benowitz, Albert E Niessner

Jet Propulsion Laboratory, Califomia Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

{ Edward.G.Benowitz, Albert.F.Niessner } @jpl.nasa.gov

Abstruct- This work involves developing representative
mission-critical spacecraft software using the Real-Time Spec-
ification for Java(RTSJ)[l]. Utilizing a real mission design, this
work leverages the original flight code from NASA’s Deep Space
l@Sl), which flew in 1998. However, instead of performing a line-
by-line port, the code is re-architected in pure Javam, using best
practices in Object-Oriented(00) design. We have successfully
demonstrated a portion of the spacecraft attitude control and
fault protection, running on a standard Java platform, and are
currently in the process of taking advantage of the features
provided by the RTSJ. Our goal is to run on flight-like hardware,
in closed-loop with the original spacecraft dynamics simulation.

In re-designing the software from the original C code, we have
made a number of observations on adopting 00 techniques for
flight software development, and we explain the benefits of this
approach. We have taken advantage of design patterns[7], and
have seen a strong mapping from certain patterns to the flight
software. The state design pattern eliminates the need for long,
error-prone switch statements. The facade pattern is used for
communication between threads, hiding queues where necessary,
or allowing direct method calls. To ensure the correctness of
measurement units, numerical computations are performed via
an abstraction layer that checks measurement units at compile-
time.

Our approach places an emphasis on pluggable technology.
Interfaces, in conjunction with a faqade pattern, expose only the
behavior of a subsystem, rather than exposing its implementation
details. Since the RTSJ reference implementation does not cur-
rently support debugging, we chose to apply pluggable technology
to the scheduler and memory allocation interfaces. Thus, real-
time client code can be run on a standard Java virtual machine,
allowing the code to be debugged in a graphical development
environment on a desktop PC at the cost of decreased real-time
performance. Once non-real-time issues have been debugged, the
real-time aspects can be debugged in isolation on an RTSJ-
compliant virtual machine.

I. INTRODUCTION
A. Motivation

Flight software has a high development cost, due in part to
the difficulty in maintaining the code. The lack of maintain-
ability stems from the limitations of current implementation
languages, which we now discuss. There is a lack of strong
type-checking and parameter checking. Memory can easily
be corrupted due to the lack of pointer checking and array-
bounds checking. Without operating system protections, these
problems can occur as silent failures. Concurrency primitives
are very low-level, and are not part of the language. A typical
program will abound with error-prone switch statements and
preprocessor directives. And only a globally shared namespace
is available.

Pluggable components cannot be expressed with traditional
flight software techniques. A pluggable component is a soft-
ware article which only exposes its interface (behavior) and
not its implementation. Pluggable components allow different
implementations to be swapped, without requiring modifica-
tions to the rest of the code. The C language does not provide
this level of encapsulation mostly because of its procedural
orientation. Although C++ attempts to provide encapsulation,
multiple inheritance problems exist. Additionally, the encap-
sulation can easily be broken by using the friend keyword.

B. Advantages of Java

To address these issues, we are investigating Java as an
implementation language for flight software. Java improves
maintainability with its strong type-checking at both compile-
time and run-time. Additionally, Java checks array boundaries,
and ensures that variables are initialized. Standard Java pro-
vides automatic memory management, and Real-Time Java
allows several forms of manual memory management where
required (see III-B for details). Multi-threading and higher-
level concurrency primitives are built into the language as well.
Java can easily express pluggable components, provides for
full encapsulation, and allows single inheritance with multiple
interface inheritance. Java also provides extensibility through
inheritance and dynamic class-loading.

Aside from the advantages of the language itself, the Java
platform includes a large standard class library with support
for most programming needs. Due to the large Java developer
community, additional Java components are available from the
internet, often for free.

According to NIST[9], Java’s higher level of abstraction
leads to increased programmer productivity. The Java platform,
coupled with Java language, improves application portability.
Additionally, Java is easier to master than C++, and supports
component integration and reuse.

C. Approach

We specifically chose to favor maintainability above all else
during the architectual, design, and implementation phases of
the development. Maintainability requires making extensive
use of design patterns, taking full advantage of Java language
features, using pluggable technology, and making appropriate
use of commercial, off-the-shelf libraries and tools. During
the performance evaluation phase, it is known that some
maintainability will be sacraficed in order to optimize parts

mailto:jpl.nasa.gov

2

of the system to meet performance requirements. However,
empirical evidence from systematic profiling of the application
will dictate where and what is to be optimized, as opposed
to prematurely attempting to optimize based on intuition,
instincts, andor assumptions of behavior.

D. Tools

COTS graphical development tools were used extensively in
this project. Specifically, the open-source Eclipse[6] integrated
development environment provided graphical code editing,
browsing, debugging, and refactoring capabilities. Headway's
Review[8] product was used to graphically inspect our design,
and allowed us to maintain a consistent architecture. Addition-
ally, JF'robe[l3] was used to examine memory usage, and to
identify critical regions for future optimization.

An RTSJ-compliant virtual machine is required for running
real-time Java applications. In addtion to the the RTSJ refer-
ence implementation, several additional RTSJ implementations
are just now becoming available: JRate[3], OVM[lO], and
FLEX[1 I].

11. PATTERNS
A. States

One of the more common design patterns we used was
the states design pattern. To appreciate the usefulness of the
pattern, we first describe the error-prone behavior which this
pattern eliminates. We then discuss the advantages of the
states design pattern, and show examples of how we applied
the pattern to our attitude control and our fault protection
subsystems.

1) Problems with past state representations : In the past,
states were represented as either booleans or enumerated types
that typically generated a long switch statement which selects
the appropriate action based on the state variable. An example
of typical code is shown in Algorithm 1. There are two major
problems with the switch statement approach.

Firstly, the programmer must manually construct a switch
statement, allowing the possibility that the programmer forgets
a break statement. The programmer must also remember to
consider all possible states within a switch statement. If the
programmer forgets a particular state, at best the error will be
caught by an assertion statement at run-time.

Secondly, the switch statement lacks extensibility. Consider
the scenario in which one new state is needed, which amounts
to adding an item to the enumeration. Every possible method
call involving the state variable would have to be manually
found and updated. If the new state were not included,
this error would not be caught until run-time, assuming the
programmer was diligent enough to use the assertions at the
end of switch statements.

2) Advantages of the States Design pattern: The state
pattern eliminates the need for long switch statements and
repeated checking of flags. Instead, each state is a separate
class but implements an interface common across the states. In
this way, we can use polymorphism to automatically determine
the appropriate code to execute in a given state, rather than
manually checking a flag. Clients of a state class call methods

Algorithm 1 Using switch statements for states in C
enum colorstate{ red, green, yellow);
void doAction(co1orstate current-color)
I

switch(current-color)
{

case red:
break;

case green:
break;

case yellow:
break;

default:
assert (false) ;

1
I

colors ta te current-color;
curren t-col or = red;
doAction (current-color) ;
curren t-col or = green;
doAction (current-color) ;

directly on the state interface, while maintaining a reference
to an instance of this interface. When the state needs to be
changed, the reference to the interface is changed with a simple
assignment to a different implementation of the interface.
With this approach, we can ensure that all states have an
implementation of the required methods, because of compile-
time checking. There is no need for a run-time assertion check
on this, enabling errors to be detected earlier. Algorithm 2
shows how each state provides its own implementation of
doAction(), cleanly separating which code logically belongs
to each state. We see that dynamic dispatch is used to
automatically call the correct state, instead of manually having
to check the state variable at the beginning of a function, as
was the case in the traditional example in Algorithm 1. Note
that all the code associated with a particular state is neatly
confined to a single class. If a new state becomes necessary,
a new implementation of the interface can be created. This
is much cleaner than having to manually track the usage of
an enumerated type throughout numerous functions containing
complex switch statements.

3) Usage in Attitude Control and Fault Protection: In
spacecraft, typically the Attitude Control System(ACS) will
progress through a series of states. For the case of DSl,
several example states include an idle state, a detumble state in
which the spacecraft attempts to reduce its angular velocities,
and a sun-pointing state. In our implementation, we use the
state pattern to represent the state of the ACS, following
the example design described in Section 11-A.2. Using the
factory pattern to hide the state implementation details, we
provide an AttitudeControlStateFactory which returns concrete
implementations of our State interface. The ACS behavior will
thus change when we call a method to transition the ACS to a
new state, passing in an implementation of the state interface
obtained from the state factory.

In addition to using states in the ACS, the DSl Fault
Protection subsystem[121 made extensive use of states. Fault
Protection responses were formally specified using StateFlow
state-charts, from which the flight code for the responses was

3

Algorithm 2 Using the states pattern in Java
interface Colorstate
(

1
public class Red implements Colorstate
I

public void doAction0;

public void doAction0
(
1

I
public class Green implements Colorstate
I

public void doAction0
{
1

I

Colorstate red = new R e d o ;
Colorstate green = new Green();
Colorstate current-color = red;
current-color.doAction0;
current-color = green;
current-color.doAction0;

. . .

automatically generated. The semantics of StateFlow state-
charts allow the designer to compose states together, and
to include code which will be executing upon entering or
exiting a particular state. The auto-generated flight code made
extensive use of goto statements, as shown in the example in
Algorithm 3. The auto-generated code must explicitly call the
enter and exit methods.

Algorithm 3 Auto-generated C state change example
if (counter == 1)
E
I
else
E

1
exit-init-state();
enter-sun-state () ;
return;

goto jout;

jout:
. . .

However, our Java approach uses an extended version of
the states design pattern. Capturing a subset of the StateFlow
semantics, we provide a direct mapping between states and
objects. Each state provides for three designated blocks of
code to be executed at the appropriate time: on entry to a state,
during a stay in a particular state, and on exit from a state.
Each state specified by the state-chart corresponds directly to
a Java object in our implementation. We require each state
to implement the abstract methods onEntry(), during(), and
onExit(). Additionally, the logic necessary to change states and
to call the appropriate methods on state transitions is handled
by an abstract hierarchical state class, separating the response
logic from state transition logic. Changing states is as simple
as a call to newstate.activateState(o1dstate);. The Java version
corresponding to the C code in Algorithm 3 is shown in
Algorithm 4. In the Java example, the this variable refers to the
current object, which is an instance of a state implementation

class. We are able to take advantage of polymorphism here to
automatically determine the proper entry() and exit() methods
to call.

Algorithm 4 Java state change example
if(counter == 1)
E

I
sun-sta te, activa testate (this) ;

B. Facade

Real-time applications will typically contain multiple
threads which need to communicate with one another. There
are several strategies available for inter-thread communication:

A thread may directly call a properly synchronized
method, gaining access to shared data. Additionally, the
developer can take advantage of Java’s wait() and notify()
methods.
A more traditional flight software approach of buffering
messages in a queue may be used. Once a message is de-
queued by the serving thread, it will execute the method
specified by the queued message.

In both of the above cases, however, we want to ensure
that the communication method itself is not hard-coded into
client threads. This decoupling ensures that the inter-thread
communication method can be changed, without requiring a
full rewrite of all clients.

To create this abstraction over the communication, we enlist
the facade pattern. According to [2] , the facade pattern shields
clients from complex subsystem implementations details, and
provides a simpler interface for the client. In our case, each
inter-thread communication is presented as a method call to
an interface. The interface abstracts the desired functionality
provided by serving class, which may or may not be in another
thread.

For the case of a direct method call, the serving object
simply needs to implement the interface, allowing clients
to make the method call directly. For the message passing
possibilities, two implementations of the interface will exist:
the actual object implementation, and the adapter. The adapter
class has a reference to the true implementation object. The
adapter will then provide implementations of all methods
specified in the interface. Within a method implementation,
the adapter creates the necessary message object, and then
calls the appropriate method on the server thread to enqueue
the message. Later, the server dequeues the message and
calls the appropriate implementation method. Throughout this
indirect call by buffered message passing, the client thread
was unaware of the need for the packaging and queuing of the
messages. A UML diagram of our use of the facade pattern
is shown in Figure 1.

C. Pluggable Components, Factories, and Dynamic Class-
Loading

Pluggable components are specified by an interface because
implementation details are not visible from classes using the

4

Fig. 1 . Communication facade

lmplementationj

components. To hide the implementation class of a particular
component, a factory is used instead of directly calling a
constructor. The factory is tasked with constructing a particular
instance of the pluggable component, and returning the com-
ponent as an interface. An abstract factory provides a further
step of abstraction. Each instance of an abstract factory can
construct an instance of a pluggable component in a differ-
ent fashion, typically instantiating a different implementation
class.

We have used dynamic class-loading, in conjunction with
abstract factories as a replacement for the C preprocessor.
By using this approach, we allow the user of an application
to choose at run-time the implementation corresponding to a
particular interface. That is, the implementation of a pluggable
component can be chosen at run-time. Clients of the interface
use an abstract factory to request an instance of an interface.
A particular implementation of an interface will have its own
concrete factory as a subclass of the abstract class factory.
The proper concrete class factory is dynamically loaded at
run-time, returning the corresponding implementation of the
interface. The advantage of this approach is that we can swap
out implementations at run-time. Specifically, this was used
to choose between our desktop scheduler implementation and
the RTSJ scheduler implementation at run-time.

In the long term, dynamic class-loading has much greater
potential for spacecraft missions. Current practice requires
reloading a binary image of the executable to a spacecraft,
followed by a reboot. We envision that Java’s dynamic class-
loading facilities could be used to provide additional function-
ality to a spacecraft by uplinking new class files to a running
system, without requiring a reboot. This capability is outside
of our current scope, but would be an interesting avenue for
further research.

111. REAL-TIME LAYER

A. Scheduler

The nature of flight software requires that certain threads
execute at certain times, and the times that the threads execute
depends on the type of work being done. For instance, control
loops run periodically while watchdogs run once at some
time to signal the system of a potential problem. Defining
the temporal boundaries and contraints for these threads is
independent of the scheduling algorithm being used, but
communicating these constraints to the scheduler is dependent
on the scheduling algorithm and its implementation. We chose
to apply the pluggable technology approach to our scheduler
so that we can use whatever scheduling algorithm is available
to us. Currently, we provide several varieties of scheduling
requests:

A one-shot timer. The scheduler will run a block of code
after at a specific time.
Periodic behavior: The scheduler will then run the block
of code at the client specified rate.
Standard: The scheduler will run the block of code when
possible.

All of these behaviors can also specify a deadline that when
crossed will cause a secondary block of code to be executed.
Additionally we provide facilities for specifying a maximum
percentage of CPU usage by a particular thread. The scheduler
to be used is selected at run-time and instantiated through the
use of dynamic class loading and factories.

Since the RTSJ reference implementation does not currently
support debugging, our choice of pluggable technology al-
lowed us to use the desktop for debugging. When running
within an RTSJ-compliant virtual machine, our scheduler
interface simply delegates out to the underlying RTSJ im-
plementation. However, when running on a standard desktop
Java virtual machine, the scheduler component uses our own
implementation, written only using standard Java features. We
emulate, as best as possible, the real-time scheduling features
on a standard Java platform. Clients may chose between the
RTSJ scheduler implementation and the desktop scheduler
implementation at run-time.

Thus, real-time client code can be run on a standard Java
virtual machine, allowing the code to be debugged in a
graphical development environment on a desktop PC at the
cost of decreased real-time performance. Once non-real-time
issues have been debugged on a standard Java VM, the real-
time issues can be debugged in isolation on an RTSJ-compliant
virtual machine.

B. Memory Areas

With the addition of the RTSJ’s scheduling and memory
management features, come new failure modes and program-
ming pitfalls. The developer must consciously avoid violating
memory area rules, and must ensure that no memory leaks
occur. We present a series of guidelines for using the RTSJ
memory management features. We provide a set of recommen-
dations for memory allocation, showing scenarios that take
advantage of memory areas provided by RTSJ. In addition,
restrictions are placed on memory allocation scenarios that
are particularly error-prone.

I) Immortal memory : Immortal memory is a new alloca-
tion scheme provided by the RTSJ. Once an object is allocated
in Immortal memory, it is never freed. The advantage of this
approach is that objects allocated in immortal memory have no
need for interaction with the garbage collector. The disadvan-
tage is that memory leaks are now possible. We recommend
that allocations to immortal memory be performed in static
initializers. We also require that object which are running in
immortal memory only allocate in their constructors. With
these restrictions in place, memory leaks can be avoided.
However, this also places severe restrictions on which classes
may be used. To use a JDK class in while running in immortal
memory, one must inspect the source code to ensure that
allocations are only performed in the constructor.

5

2) Scoped memory usage: Scoped memory provides a
means to dynamically allocate and free memory without using
the garbage collector. Object allocated within a scope persist
for the lifetime of the scope. Once the number of threads
within a scope reaches zero, all objects allocated within the
scope are destroyed. Additionally, scopes may be nested. The
advantage for application programmers is that a large number
of objects can be allocated and freed at once, without creating
excess work for the garbage collector. One can think of scopes
as a generalization of the C stack with the exception that the
objects are finalized in the case of scopes.

A particular scoped memory region is represented by a
scoped memory object, which itself must be allocated in
a memory region. If one allocated a scoped region on the
heap, the scoped memory object itself would be subject to
interference from the garbage collector. For our application,
all threads are created at application startup time. In this
case, we can allocate scopes in immortal memory, and have
examined the possibility of creating separate scopes on a per-
thread basis. This scope allocation paradigm is quite similar
to having one C stack per thread. The thread would then enter
its own scoped memory, perform allocations, and then leave
the memory area, automatically destroying the scope-allocated
data. The size of the scope can be determined by profiling
the memory usage characteristics of a particular thread, taking
into consideration the requirements of the application and the
available hardware resources.

With the RTSJ, it is also possible to nest scopes. We now
provide an example of how to exploit this feature. Suppose
we are inside a scoped memory region. Assume we have a
for loop, which allocates 1K per iteration, and the loop runs
1K times. Further assume that the scoped memory region is
entered once before the loop. The scoped memory area must
be 1 meg in size. However, if we enter a nested scope once
per iteration of the loop, all of the memory allocated will be
freed at the end of each loop iteration. Thus, we can reduce
the scoped memory size to 1K. So we see that using nested
scopes within loops allows us to reduce the memory usage.
Further examples of the use of scoped memory can be found
in [5] .

The difficulty with scopes is their limited lifetimes. We
envision entering and leaving a scoped memory region once
for every iteration of our control loop. However, some data
will need to persist beyond the lifetime of the scope, so we
must provide mechanisms for copying data out of a scoped
memory region. To facilitate this, we recommend providing
memory areas as parameters to factories. These factories could
then be used to copy and construct objects in arbitrary memory
areas.

3) No Heap Real-time Threads: As a new thread class,
the RTSJ introduces NoHeapRealTimeThreads[NHRTT).
NHRTTs cannot access object allocated on the heap, thus
avoiding interactions with the Garbage collector. There are
several choices available for an application architecture using
NHRTTs: either all threads will be NHRTTs, or a mix of
NHRTTS and real-time threads will be permitted. Designers
who choose to use all NHRTTs will be working in a restrictive
environment: all data which cannot be discarded upon leaving

a scope must be allocated in immortal memory. In this
environment with only manual memory management, some
of the benefits of Java disappear, and another implementation
language may be more suitable.

We now consider the case of an application containing both
NHRTTs and real-time threads. To maintain a clean architec-
ture, the application architect should attempt to make inter-
thread communication as transparent as possible. However,
moving data between a NHRTT and a real-time thread requires
special handling. Data moving between the two threads must
be transferred using a wait-free queue provided by the RTSJ.
But due to the requirements of NHRTTs, objects passed
through the queue will typically have to be allocated in
immortal memory. However, to avoid memory leaks these
queued objects must be managed. We have pondered using
two possibilities, both of which we find unsatisfactory.

The first possibility is to implement a pool of objects
which can be used for communicating with immortal memory.
This has several disadvantages. The objects allocated within
the pool cannot be immutable, decreasing the application’s
maintainability. Additionally, a pool can only contain objects
of a single class. As a second possibility, consider replacing
the pool with a pre-allocated block of bytes in immortal
memory. Objects being sent would then be serialized to this
common area, allowing objects of different classes share
the same memory block. Unfortunately this introduces an
unnecessary serialization cost at run-time. The serialization
approach essentially reduces to a Fortran common block, and
forces classes to provide otherwise unnecessary serialization
logic. In summary, we have not been able to determine a clean
way of moving objects from a NHRTT to a real-time thread
without major changes to the application’s architecture, and we
consider this to be an open problem for the RTSJ community.

IV. UNITS
A. Problems with past practice

In current flight software projects, the measurement units are
not explicitly part of the software. Perhaps measurement units
are designated in an external document or in code comments,
but there are no automated checks at either compile-time or at
run-time to ensure that unit arithmetic is correct. For example,
multiplying a velocity by a time should result in a distance. But
since values are only represented as doubles, nothing prevents
the developer from incorrectly treating the result of such an
operation as a force, for example. We have already seen the
disastrous consequences of incorrect units in the Mars Climate
Orbiter mission.

B. Our approach

To remedy this problem, we advocate making measurement
units an integral part of the application code. Our package
provides compile-time checking of measurement units. We
provide interfaces for physical units, such as forces, distances,
and times, and allow scalars, matrices, and tensors of values
with physical units. With measurement units explicitly part of
our code, we gain a number of advantages. Since measurement
units are checked at compile-time, bugs are detected sooner,

6

with a lower cost to repair them. Specifically, by using the
units framework in our development, the detumble control loop
was debugged in only 13 iterations. Because we knew that the
measurement units were correct, pinpointing the actual cause
of the errors became simpler.

In implementing our units framework, we have made use
of COTS class libraries. However, since units are pluggable
components, alternative implementations are possible. For per-
forming matrix and vector operations, we take advantage of the
classes providing such functionality in Java3d. Additionally,
for unit representation, we make use of the Jade library[4]. The
admitted disadvantage of using Java for this situation is the
lack of operator overloading, since the syntax for performing
arithmetic does become quite verbose.

V. CONCLUSION
A. Summary

We have developed a pure Java prototype attitude control
system, capable of performing a detumble maneuver in real-
time, along with a pure Java fault protection subsystem.
In developing this prototype, we have shown how to apply
best practices in 00 design. We have demonstrated how to
apply design patterns to a realistic flight software development
effort. Specifically, we have demonstrated the applicability
of pluggable components, factories, states, and facades. The
measurement units facility allows the checking of unit cor-
rectness at compile-time. We have explored the features of
the RTSJ, discussing the usage of memory areas. We have
created a pluggable scheduler component, enabled debugging
on a standard Java platform. Taken together, our work has
exploited Java and RTSJ features to demonstrate how to create
more maintainable flight code.

VI. ACKNOWLEDGMENTS
This work was supported in part by the Center for Space

Mission Information and Software Systems(CSM1SS) at the
Jet Propulsion Laboratory, and by the Ames Research Center.

REFERENCES
[l] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, M. Tumbull, The

Real-Eme Speci3cation for Java, Addison-Wesley, 2000.
[2] J. Cooper, The Design Patterns Java Companion, Addision-Wesley,

1998.
[3] A. Corsaro and D.C. Schmidt. “Evaluating Real-Time Java Features and

Performance for Real-time Embedded Systems:’ Technical Report 2002-
001, University of California, Irvine, 2002.

[4] J.M. Dautelle, “JADE Java Addition to Default Environment”,
http://jade.dautelle.com/, 2002.

[5] P. Dibble, Real-Eme Java Platform Programming, Prentice Hall, 2002.
[6] “Eclipse.org” , http://www.eclipse.org/, 2003.
[7] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Sofiware, Addison Wesley, 1994.
[8] “Headway Software”, http://www.headwaysoft.com/, 2003.
[9] NIST Special Publication 500-243, Requirements for Real-time Exten-

sions for the Java Platform: Report from the Requirements Gmup for
Real-time Extensions for the Java Platform, 1999.

[IO] OVWConsortium, “OVM: An Open RTSJ Compliant JVM.”
http://www.ovmj.org, 2003.

[l l] M. Rinard et al., “FLEX Compiler Infrastructure”, http://www.flex-
compiler.lcs.mit.edu//, 2003.

[12] N. Rouquette, T. Neilson, and G. Chen, “The 13th Technology of DSI.”
Proceedings of IEEE Aerospace Conference, 1999.

[131 “Sitraka JProbe”, http://www.silraka.com/software/jprobel, 2003.

http://jade.dautelle.com
http://www.eclipse.org
http://www.headwaysoft.com
http://www.ovmj.org
http://www.flex
http://compiler.lcs.mit.edu
http://www.silraka.com/software/jprobel

