
CLARAty and Challenges of Developing Interoperable Robotic Software 
Issa A.D. Nesnas, Anne Wright, Max Bajracharya, Reid Simmons, Tara Estlin 

Email: firstname.lastname@jpl.nasa.gov 
Jet Propulsion Laboratory, California Institute of Tehcnology, Pasadena, CA 91 109 

March 10,2003 

framework for while maintajning the ability to easily 
integrate platform-specific algorithms. 

Abstract 

In this article, we will present an overview of the 
Coupled Layered Architecture for Robotic 
Autonomy. CLARAty develops a pamework for 
generic and reusable robotic components that can 
be adapted to a number of heterogeneous robot 
platforms. It also provides a framework that will 
simplifi the integration of new technologies and the 
comparison against similar technologies. CLARAty 
consists of two distinct layers: a Functional Layer 
and a Decision Layer. The Functional Layer defines 
the various abstractions of the system and adapts the 
abstract component to real or simulated devices. It 
provides apamework and algorithms for low- and 
mid-level autonomy capabilities. The Decision Layer 
provides the system 's high-level autonomy which 
reasons about global resources and mission 
constraints. The Decision Layer interacts with the 
Functional Layer using a client-server model, which 
accesses information at multiple levels of 
granularity. In this paper, we will also present some 
of the challenges in developing interoperable 
sojhvare for various rover platforms. 

1 Introduction 

Developing intelligent capabilities for robotic systems 
requires the integration of various technologies fiom 
different disciplines. It also requires the interaction of 
various software components within a real-time system, 
and the management of uncertainties resulting &om the 
interaction of the robot with its environment. The 
uncertainties fiom the environment, the complexities of 
softwarehardware interactions, and the variability of the 
robotic hardware make the task of developing robotic 
software complex, hard, and costly. However, a number 
of the algorithms developed for robotic systems can be 
generalized and applied to a number of platforms 
irrespective of the details of their implementations. It is 
such algorithms that the Coupled Layered Architecture 
for Robotic Autonomy (CLARAty) is trying to provide a 

CLARAty is domain-specific robotic architecture designed 
with four main objectives: (i) to reduce the need to develop 
custom robotic infrastructure for every research effort, (ii) 
to simplify the integration of new technologies onto 
existing systems, (iii) to tightly couple declarative and 
procedural-based developments, and (iv) to operate a 
number of heterogeneous rover with Merent physical 
capabilities and hardware architectures. CL.ARAty is a 
collaborative effort among California Jnstitute of 
Technology's Jet Propulsion Laboratory, Ames Research 
Center, Camegie Mellon University, and a number of other 
universities and members fiom the robotics community. 

2 Background 

With the increased interest in developing rovers for future 
Mars exploration missions, a significant number of rover 
platforms have been designed and built over the past 
decade. Several NASA centers and university partners use 
these platforms to test their newly developed technologies 
to improve the autonomous robot capabilities. Because of 
the differences in the mechanical and electrical designs of 
these vehicles, they shared little in terms of software 
idiastructure. Transferring capabilities fiom one rover to 
another has been a major and costly endeavor. Because 
robotics systems cover several domain areas, researchers 
of a single domain also needed to integrate their newly 
developed technology into the complex robotic 
environment. Proper integration requires an indepth 
understanding and characterization of the behavior of 
various components of the system, which may vary itom 
one platform to another. 

One of our goals is to provide a design that allows 
researchers to use various components spanning domains 
outside their immediate expertise but have these 
conlponents flexible and extendiile to support various 
applications. To do so, we need to capture well- 
understood and well-developed knowledge fiom the 
various domains into generalized and reusable domain 
components. Just like an operating system provides a 
level of abstraction &om the computational hardware, our 
goal is to provide a level of abstraction from the robotic 
hardware implementation that will allow developers to 

mailto:firstname.lastname@jpl.nasa.gov


‘‘integrate once and run anywhere.” Of course, there are 
physical hutations to this goal due to the large variability 
among rover capabilities. 

The development of robotics and autonomy architectures 
dated back several decades. We will not attempt to 
provide a comprehensive review of the body of work 
upon which this effort builds. Typical robot and 
autonomy architectures are comprised of three levels - 
Functional, Executive, and Planning levels 
\cite (ALAM198) \cite { GAT98) \cite { SIMMONS98). 
Some architectures emphasized one area over others and 
thus became more dominant in that domain. For example, 
some architectures emphasized the planning aspects of the 
system \cite{estlin:ijcai99) \cite{FIRBY89), others 
emphasized the executive \cite{BORREiLLY98} 
\cite{sirnmons:icirs98}, while others emphasized the 
functional aspects of the system \cite {mobility-software- 
isrobotics) \cite { nesnas-stanisic-94) \cite { schneider- 
chen-pardo-castellote-wang-98). There has also been 
efforts that aimed at bluning the distinction between the 
planning and executive layers \cite { fisherieeeaero98) 
\cite {knight:spaceopsOO} . Other architectures did not 
explicitly follow this typical breakdown. Some focused on 
particular paradigms such as fuzzy-logic based 
implementations \cite { konolige-saphira-97) or behavior- 
based implementations \cite {arkin-89) \cite {brooks-86). 
There has been considerable effort in architectures that 
addressed multiple and cooperating robots \cite {parker- 
95)\cite {mataric-97). 

One difference between the CLARAty architecture and the 
conventional three-level architectures is the explicit 
distinction between levels of granularity and levels of 
intelligence. In conventional architectures both 
granularity and intelligence were aligned along one axis. 
As you move to higher abstractions of the system, 
intelligence increases. This is not true for the CLAR4ty 
architecture, were intelligence and granularity are on two 
Merent axes. In other words, the system decomposition 
allows for intelligent behavior at very low levels while 
st i l l  maintaining the structure of the different abstraction 
levels. This is similar in concept to hybrid reactive and 
deliberative systems. 

3 An Overview of the CLARAty 
Architecture 

The CLARAty architecture has two distinct layers: the 
Functional Layer and the Decision Layer. The Functional 
Layer uses an object-oriented system decomposition and 
employs a number of known design patterns 
\cite { gamma} to achieve reusable and extendible 
components. These components define an interface and 
provide basic system functionality that can be adapted to 

real or simulated robots. It provides both low- and mid- 
level autonomy capabilities. The Decision Layer couples 
the planning and execution system. It globally reasons 
about the intended goals, system resources, and state of 
the system and its environment. The Decision Layer uses 
a declarative-based model while the Functional Layer 
uses a procedural-based model. Because the Functional 
Layer provides an adaptation to a physical or simulated 
system, specific model information is collocated in the 
system adaptations. The Decision layer receives t h i s  
information by querying the Functional Layer for 
predicted resource usage, state updates, and model 
information. However, additional adaptation specific 
heuristics are often used with current planners to assist in 
plan generation. These adaptation specific heuristics, 
which are only used by the Decision Layer, can be 
accessed directly and not via the Functional Layer. 

Figure 1: Decision Layer (red) interaction with the 
Functional Layer (blue) 

The Decision Layer can access the Functional Layer at 
various levels of granularity. The architecture allows for 
overlap in the functionality of both layers. This 
intentional overlap allows users to push the declarative 
model to elaborate to lower levels of granularity while 
allowing the Functional Layer to provide fixed order 
procedures for mid-level autonomy capabilities. In the 
latter case, the Decision Layer serves as a monitor to the 
execution of the Functional Layer behavior which can be 
interrupted and preempted depending on mission 
priorities and constraints. Figure 1 shows the relationship 
between the Functional Layer and the Decision Layer in 
CLARAty. 

3.1 The Functional Layer 

2 



The FUI IC~~OM~ Layer includes a number of generic 
frameworks centered around various robotic-related 
disciplines. Of the packages included in the Functional 
Layer are: I/O, motion control and coordination, 
locomotion, manipulation, navigation, mapping, terrain 
evaluation, path planning, science analysis, estimation, 
simulation, and system behavior. The Functional Layer 
provides the system’s Iow- and mid-level autonomy 
capabilities. High-level control algorithms such as vision- 
based navigation, sensor-based manipulation, and visual 
target tracking use a predefined sequence of operations 
and are often implemented in the Functi0~1 Layer. 
However, in some case, it is also possible to generate such 
sequence of operations by modeling them as activities in 
the database and have the Decision Layer schedule 
activities based on appropriate constraints. 

The F U U C ~ ~ O M ~  Layer has four main features. First, it 
provides a system level decomposition with various levels 
of abstractions. For example, in the locomotion domain, a 
general locomotor provides an interfkce to any type of 
mobility platform whether it is a wheeled vehicle, a legged 
mechanism, or a hybrid of the two. A functional 
specialization of the locomotor is the wheeled locomotor. 
This specialized introduces the concept of wheeled 
mobility and wheel configuration. This abstraction extends 
the locomotion intex&ce to include additional capabilities 
that can be accomplished. Further extension of wheel 
locomotor includes special type of wheel locomotor with 
known locomotion models. 

Second, the F u n ~ t i o ~ l  Layer separates algorithmic 
capabilities fiom system capabilities. It is important to 
decouple system limitations fiom the algorithm 
limitations in order to avoid propagation of assumptions 
that are unique to a particular plat6om. Algorithms are 
expressed in their most general terms without 
compromising understandability and efficiency. where 
efficiency requirements are not met, specializations are 
provided to overwrite the general solution. An example of 
such capability can be found in the manipulation domain. 
General inverse kinematics algorithms provide a generic 
solution for all serial mnipulators but are often not 
efficient. As a result, they are overwritten with 
specialized, more efficient, versions. The general versions 
however, can still be used in instances where specialized 
solutions have not been formulated or for validating the 
specialized implementation. 

Third, the Functional Layer separates the behavioral 
definitions and interactions of the system fiom the 
implementation. This not only allows the dynamic 
binding of adaptations at runtime, but it also makes both 
the functional and implementation trees extensible. For 
example, a wheeled locomotor separates the interfkce to 
hardware fiom the specialization along the behavior and 

model configurations of the system. Another example is the 
controlled motor which separates the specialization to a 
particular hardware controller fiom the k t i 0 ~ 1  
specialization of a controlled motor to a joint (which 
extends the motor functionality by imposing checking of 
joint limits on all the move commands) This pattern has 
been implemented on various systems and is known as the 
bridge pattern \cite {gamma}. 

Fourth, the Functional Layer provides flexible runtime 
models. The runtime model is part of the abstraction 
model, of which, one part is associated with the generic 
h c t i ~ ~ l i t y  and the other with the adaptation. The 
runtime model associated with the adaptation is 
dependent on particular capabilities of the underlying 
hardware and can change fiom one system to another. For 
example, a system with distributed motion control does 
not need to run the servo control threads and possibly the 
trajectory generation threads on the main processor. This 
capability can be implemented in firmware and on 
distributed processors. 

3.2 The Decision Layer 

The Decision Layer is a global engine that reasons about 
system resources and mission constraints. It includes 
general planners, executives, schedulers, activity 
databases, and rover models. 

The Decision Layer plans, schedules, and executes 
activity plans. It also monitors the execution modifying 
the sequence of activities dynamically when necessary. 
The goal of a generic Decision Layer is to have a unified 
representation of activities and interfaces with the 
Functional Layer. The current instantiation of the 
Decision Layer features a tight coupling of the planner 
and executive which interacts with a separate Functional 
Layer at all levels of system granularity. The planner 
implementation is CASPER \cite{casper} and the 
executive implementation is TD \cite {tdl} . 

The Decision Layer interacts with the Functional Layer 
using a client-server model. The Decision Layer queries 
the Functional Layer about availability of system 
resources or for predicting the usage of a particular 
resource for a given operation. The Decision Layer sends 
commands to the F u n ~ t i o ~ l  Layer at various levels of 
granularity. The Decision Layer can utilize encapsulated 
Functional Layer capabilities with relatively high-level 
commands, or access lower-level functionality and 
combine it in ways not provided by the Functional Layer. 
The former is valuable when planning capabilities are 
limited, or when under-constrained system operation is 
acceptable. The latter is valuable if detailed, globally 
optimized, planning is possible, or if resource margins are 
small. CLARAty supports both modes of operation. 



Status is reported ftom the Functional Layer to the 
Decision Layer asynchronously or synchronously at rates 
specified by the Decision Layer. 

4 Challenges in System Decomposition 

The proper decomposition for a generic robotic system, in 
large, depends on what elements of the software are 
targeted for reuse in future applications. One approach for 
an architectural decomposition is to highlight the runtime 
model and inter-component communication mechanism 
independent of the domain it addresses \cite { schneider- 
chen-pardo-castellote-wang-98). Another would be to 
highlight the states of the system making them explicit 
with global scope \cite{mds}. A third would be to 
highlight the abstract behavior and interface to the states 
of the system while hiding runtime models. It is the latter 
approach that CLAR4ty adopted in order to hide the 
variability that arises ftom various implementations. 

Two fundamental notions of CLAR4ty are abstractions at 
various levels of granularity and encapsulation of 
information at the appropriate levels of the hierarchy. First, 
abstractions are an important notion in a robotic system in 
order to reduce complexity and to provide an operational 
interface at various levels of the system architecture. 
Algorithmic development can occur at any level of 
abstraction. At any given level, higher levels can be 
replaced by user defined substitutes. Second, without the 
proper encapsulation, implementation specific information 
and assuIIlptioIls can “bubble up” to higher levels and break 
reusability across domains and platfom. This does not 
mean that CLARAty does not support platform specific 
algorithms. Specific algorithms are ones that can neither be 
generalized nor is it effective to generalize in order to 
expand the scope of their applicability. 

There are three main types of abstractions in the 
Functional Layer: (1) data structure classes, (2) 
genericlspecialized physical classes, (3) generic/ 
specialized functional classes. All classes are designed to 
maximize code reuse across disciplines, eliminate 
duplicated functionality without compromising efficiency, 
and simple code integration. 

Generic components both physical and functional: (a) 
provide interface definitions and implementations of basic 
functionality, (b) provide local executive capabilities, (c) 
manage local resources, and (d) support state and resource 
queries by the Decision Layer. 

4.3 Data Structure Classes 

Data structure classes, which handle data transformation 
and storage, enable easy propagation of software 
optimization, and allow easy serialization and transport. 
One characteristic of data structures is that they do not 
have any executive capability, making them the easiest to 
implement and port on multiple operating systems. While 
their efficiency is of prime importance, they themselves 
do not invoke other threads (tasks). These classes provide 
the extended interface for communication among generic 
physical and functional components. Since general- 
purpose data structures are reusable beyond the scope of 
robotics applications, we are leveraging standardized 
developments such as the Standard Template Libmy 
\cite{austem-stl}. However, domain specific 
implementations are developed. Such classes include points, 
bits, arrays, vectors, matrices, rotation matrices, images, 
homogeneous transforms, quartemions, frames, fiame trees, 
messages, and resources. 

4.4 Generic Physical Classes 

A generic physical component (GPC) defines the 
structure and behavior of a physical object in an abstract 
sense. Some of these classes have partial implementations 
since they will eventually to adapted to a physicall 
simulation classes that will complete their 
implementation. A generic physical component can be 
extended along two axes: functional and implementation. 
The functional extension includes addition of control and 
operational capabilities. The implementation axes include 

Figure 2: Parallel state machine for a generic physical 
controlled motor 

specialization to hardware and overriding generic default 
implementation. A generic physical component can also 
have a model which descriies the device without 
specifying how it is implemented. For example, a 
locomotor abstraction provides an interface to any type of 
mobility mechanism, whether it be wheeled, legged, or 
hybrid. The interface includes controlling any point on the 
vehicle to be moved along a path or otherwise to a 

4 



merent point in the world. It also includes controlled the 
speed of such a maneuver. There are also a number of 
queries about the state of the vehicle and it pose. Without 
further knowledge of the type of mechanism, it is not 
possible to get further information without imposing 
additional constraints on the type. 

In addition to defining the interface and behavior, the 
generic physical classes also define the state machines of 
an abstraction. Figure 2 shows the state machine for a 
generic controlled motor. 

Generic physical classes can be active, i.e. they provide 
their own threading model. Examples of such components 
are: manipulator, locomotor, controlled motor, wheel, 
camera, and digital I/O to name few. A compIete list of 
characteristic and of these can be found at \cite{Nesnas 
IROS} . 

The base abstraction for generic physical components is 
the Device class from which other classes derive. It uses a 
generic mechanism to query device properties and can 
retrieve both generic and specialized properties of a 
device via a generic mechanism. The Device provides a 
centralized infrastructure for device thread safety. 
Devices include three types of informatio~~ attributes 
(static parameters such as initialization parameters), 
parameters (dynamic parameters that are changed by the 
user or application at runtime), and device output data. 
Devices also carry textual information their given names 
and ancestries. 

4.5 Generic Functional Classes 

A generic functional class is an abstract class that 
describes the interface and functionality of a generic 
algorithm. A generic functional class can have a complete 
implementation of its functionality because it interfaces 
with generic physical classes. Examples of generic 
functional classes are: Mapper, Navigator, Traversability 
Analyzer, Visual Tracker, and so on. Just like physical 
classes, functional classes are active and can generate 
separate threads of execution and run within multiple 
threads. In other words, these classes can have local 
executive capability. 

For example, a navigator provide a functional behavior 
that will evaluate a terrain and assess its traversability, 
then move a mobility platform using both local and global 
information. The navigator interfaces with a locomotor 
for controlling the vehicle, an estimator for querying of 
pose information, a traversability analyzer for converting 
sensor data into a model of the world, an action selector 
to determine the appropriate next action for the robot to 
perform given its current state, and cost functions for 
converting terrain evaluation data into a form that can be 
used by the planner. A detailed description of the 

navigator functional classes can be found in 
\cite {urmson} . 
The estimator is another type of generic functional 
component that can be specialized to a particular type of 
state propagation filter such as a Kalman Filter or a 
Bayesian Filter. 

Equivalent to the device class for generic physical classes 
is the behavior can be used as a base class for generic 
functional classes. 

5 Specialized PhysicaUFunctional Classes 

Specialized classes are extensions of generic classes that 
adapt the general mechuaism and configurations to a 
particular robotic platform or a specialized system 
configuration. An example of a specialized physical class 
is found in the Rocky 7 rover implementation. During the 
adaptation process of the mast software, the generic 
manipulator class is specialized to a Rocky 7 mast class. 
The manipulator class provides generic forward and 
inverse kinematics, joint motion control, trajectory 
tracking, conditional motion, and error recovery. The 
specialized Rocky 7 mast class specifies the links 
dimensions, joint limits, actuator type, and end effector 
type. It also overrides the generic kinematics of the 
manipulator class with the closed-fonn kinematics that 
are specifically derived for this type of manipulator. 

A specialized functional class is a class that is derived 
from its generic counterpart and specializes a particular 
configuration. For example, a rocker bogie locomotor 
model is a specialization of a generic wheel locomotor 
model (the rocker bogie is a mechanism that has 
differential motion of the left and right sides of a six 
wheel vehicle - commonly used for Mars exploration 
rovers). 

5.6 Runtime and Data Flow Models 

Because CLARAty supports system with different 
hardware architectures, the runtime model changes across 
robotic platforms. As a result, it important to encapsulate 
the specialized runtime implementation but characterize 
the usage of resource as a result. 

Two models of data flow are used in CLARAty. Both 
push and pull models are used depending on the 
adaptation layer and matching hardware architecture. For 
systems that have bandwidth limitations on a shared bus, 
a where the need for the data is asynchronous and 
constitutes a subset of all possible information &om that 
can be attained fiom the bus, then a pull model allows 
maximum flexibility. If the usage is predictable and 

5 



synchrounous then a push model is used. For a given bus, 
and if both modes are supported by hardware, it is 
possible to switch the system between these two modes 
depending on the operation regime. For example, on a 
rover that uses a shared bus for communicating with 
distributed motion controllers on the mast and the arm, 
the system only retrieves information on the manipulator 
that is under control. 

Generic classes can also employ a similar mechanism for 
data flow. However, the mechanism must be able to 
support an extendible data set with strong typing. A 
publish subscribe mechanism was design and 
implemented that can handle extendible data type. The 
mechanism registers objects with a particular data source. 
As information becomes available, a number of pending 
objects will execute their operations based on their 
current priority and registration order. 

6 Implementation of Locomotion on various 
mobile platforms 

. . . . . - .. . . . . . . .  . ,. . _ . , .  

.:i 

Figure 3: Various types of wheeled locomotors 

One of the main challenges in developing generic 
components and adaptating them to different robots stems 
from the variability of the platforms and their capabilities. 
For example, surface exploration robots can be wheeled 
vehicles, legged mechanism, or a hybrid of the two. We 
will focus our discussion on wheeled locomotors. There 
are several challenges in developing generic classes for 
locomotion The first challenge comes from the different 
capabilities that wheeled locomotor can exhibit depending 
on their configuration. 

We will consider the locomotion capabilities and motion 
control architecture for a number of mobile platforms to 
which we were adapting CLARAty. Figure 3 shows the 
ATRV, Rocky 7, Rocky 8, FIDO, K9, Sojourner, and 
Hyperion rovers. While all these are wheeled vehicles, 
they have different maneuvering capabilties. The proper 
classification of these vehicles will be based on the 
domain knowledge of the kinematics and dynamics for 
controlling these vehicles. One approach which we 
adopted to separate vehicles as moveable axle (e.g. 
Hyperion) vs fixed axle (or fixed contact model - all 
others). For fixed axle robots, one can further classify 
these robots as non-steerable (or skid steerable) such as 
ATRVs, partially steerable such as Rocky 7 and 
Sojourner rover, and fully steerable such as Rocky 8, 
FIDO, and K9 rovers. Partially steered vehicle can have 
different configurations. For example the Sojourner rover 
which has six drive wheels has two non-steerable center 
wheels. On the other hand, Rocky 7 has only two 
steerable front wheels. As such, partially steerable wheel 
locomotors are constrained to instantaneously move about 
a rotation center that lies along the non-steerable wheel 
axle (or an axle that averages all non-steerable axles in 
order to minimize slip). Fully steerable vehicles can do 
crab maneuvers and can maintain a certain heading while 
driving along a path trajectory. Partially steerable vehicle 
have more constraints and use Ackermann maneuvering 
to compensate for crabbing \cite{nesnas} 

A general way for describing motion for all fixed axle 
models is by specifjmg three independent control 
variables that are a function of time: delta length of 
traverse, delta heading, and motion direction angle. For 
fully steered vehicles one can use all three parameters. 
For partially steered vehicles, the motion direction angle 
is fixed by the fixed axle@). The latter is a degenerate 
case of the fully steered model. 

A sccond challenge that arises in addressing these class of 
vehicles comes from the accessibility of the system's 
control parameters. For example, the ATRV can provide 
control for only the side of the vehicle but not for 
individual wheel. So the control model for the vehicle is 
different than others. 

A third challenge steps from the different motion control 
architectures. Consider the motion control architecture of 
Rocky7, Rocky8, K9 and FIDO. While closer in 
resemblence to each other from, say the ATRV (all have 
six wheels and almost all have fully steerable 
capabilities), the control architecture for each vehicle is 
uniquely different. 

6 



D W U O  1 1 1  

Figure 4: Distributed motion control architecture for 
Rocky 8 and 

Starting with the Rocky 8 and K9 rovers (Figure 4), both 
rovers use a distribution control architecture where each 
motor interface with a single-axis microprocessor 
controlling the motor servo loop and sometimes trajectory 
profiling. Distributed micocontrollers can, as in the case 
of Rocky 8, also perform analog and digital YO 
operations. They also possess some additional 
programmable processing capabilities. In a distributed 
system, micro controllers are connected to the main 
processor via some type of a serial bus. Rocky 8 uses a 
single 12C bus for its locomotor, arm, and mast. So 
architecturally, there is an important coupling between 
controlling the arm and locomotor simultaneously, which 
is support by bus bandwidth should also be supported by 
the software architecture. The K9 rover uses a dedicated 
multi-drop RS422 serial link for the locomotion motors. 

Another aspect of hardware architecture is hardware 
synchronization. The K9 system supports hardware 
synchronization of motors via an electrical signal. The 
Rocky 8 rover implements synchronization in software by 
loading all motor trajectories fmt and then issuing start 
commands to all motors sequentially to minimize latency 
between the fmt and last motor. Once again the software 
architecture should support these two different modes of 
synchronizations. As such, support for device groups is an 
essential part of the architecture. The flexibility in 
implementation of group commands is also important 
since hardware implementations vary. 

The Rocky 7 system uses COTS micocontroller chps 
(LM629) (Figure 9, however, they are connected to the 
host processor via a custom parallel port connection with 
chip multiplexing. While communication speeds are 
superior to Rocky 8 and K9 serial links, all actuators 
share the same bus which has to be aribrated to support 
locomotion and manipulation operations. Hence there is a 
couplng between arm, mast, and locomotion 

PID C&oucn 

Figure 5: Custom parallel bus for centralized motion 
controllers on Rocky 7 

PID Ccmaol In sofhrrc 

lLhutorf€oco&n 

Figure 6: The FIDO motion control architecture 

commanding. As in the case of Rocky 8 and K9, the 
closed loop motion control is done on separate non- 
programmable control law microcontroller. 
Figure 6 shows the FIDO motion control architecture. 
FIDO uses a hardware mapped centralized control 
architecture. All motors and encoders are connected to 
PC104 analog output boards and quadrature encoder 
boards respectively. Hardware statedregisters are memory 
mapped via a PCI bus to the host processor making them 
readily accessible to the software architecture. There is 
virtually zero cost fiom a software architecture standpoint 
to retrieve the value of any register. Hence the coupling 
among the various actuator/encoders states are abstracted 
by the hardware. However, since the host processor is the 
only one in the system, the servo control for all actuators 
has to be done on the main processor. This has the 
advantage of allowing the architecture to easily modify 
the control law and insert validation and checks in case 
failure of a motor or encoder occurs. In some cases that 
cannot be achieved with COTS processors. On the other 
hand, this places a requirement on the operating system 
and the software architecture to be able to achieve hard 
real-time control to service all servo loops. It also 
introduces a coupling between the servo loops and the 
applications algorithms which are competing for the same 

7 



resources. So while K9 and Rocky 8 can operate in a soft 
real-time environment such as Linux, the FIDO rover 
requires the operating system and supporting architecture 
to run in hard real-time. 

To run effectively all the above platform, CLARAty had 
to be able to support the various hardware architectural 
models. For a system'such as Rocky 8, pushing all motor 
and YO information via the I2C bus to the main processor 
limits the bandwidth since the type of information 
requested by maybe different depending on the algorithm 
that is operational at any instance in time. So a pull model 
is used in this case. However, coorperative scheduling is 
used to acquire the needed information for motion 
control. In comparison, this information is readily 
available on the FIDO rover. The Rocky 7 and K9 rovers 
are hybrids of these two examples. 

Despite the variations, there is a level of abstraction that 
can be used to interoperate across these systems. For this 
example, the controlled motor and motor group 
abstractions are used. Given that each motor is controlled 
via the generic controlled motor interface, the runtime 
model for each implementation will vary. For instance, 
the FIDO motor runs two threads, one for closed loop PID 
servo control, and a second at a lower rate for trajectory 
generation. The Rocky 7 and K9 motors run no additional 
threads and passes the necessary trajectory parameters to 
the firmware which will runs its own hardware thread. 
The Rocky 8 motor will use a single thread for trajectory 
generation while the microcontroller runs the PID control 
law. To the user of a controlled motor, the abstraction of 
the controlled motor and the resources its adaptation 
consumes is what is needed without necessarily exposing 
the details of the implementation. The controlled motor 
abstraction is then used in a wheel abstraction and later a 
wheel locomotor model. 

While these are three different implementations of a 
motion control system, the behavior and functional 
requirements of the controlled motor are the same. In any 
of these implementation, you would still like to do 
position commanding, velocity profiling, and trajectory 
control. You would also like to detect and report stall 
conditions and be able to interrupt the motion. You would 
also like to read the current and desired positions, 
velocities, accelerations, and health status. For a person 
developing vision-based navigation component for a 
mobile robot, it is only necessary to understand the 
behavior of the component rather than be required to have 
intimate knowledge of the implementation and hardware 
details. Nor should they have a particular implementation 
inadvertently influence their design of vision-based 
navigation algorithms. The motor and coordinated motors 
classes are an abstract representation for motion control 
that define what the components are supposed to do. 

These components hide the details of the implementation 
without compromising particular features of the hardware. 

Some prelimary results showed that for one 
implementation of wheeled locomotor, about 90% in 
terms of lines of code that was resuable among FIDO, 
Rocky 8 and Rocky 7. For the controlled motor part, the 
reusbale percentage ranged fiom 50%-70%. These 
statistics considered that the drivers, although generic to 
run in different environments, are st i l l  deemed too 
specific to include in the reusbale count. (these statistics 
are rough estimates of line counts which include 
comments and spacing) 

7 Summary 

Currently, the CLARA@ architecture has been adapted to 
five real rovers with Merent hardware architectures and 
physical capabilities. It has also been adapted to the 
ROAMS high-fidelity simulation. CLARA@ is operating 
the Rocky 8, FIDO and Rocky 7 rovers at JPL. It is also 
running on the K9 rover at ARC and an ATRV rover at 
CMU. Various capabilities have been demonstrated on 
various vehicles. 

We have presented a brief overview of the CLARA@ 
architecture and some of the design trades and reasons for 
their adoption. We have also presented some of the 
challenges that are encountered working and adapting an 
architecture on various systems. 

We are continuing the development of CLAR4ty to 
achieve its goals of a generic reusable robotic software 
base that we hope to publish as open source. 

9 Acknowledgments 
The work described in this paper was carried out by the 
entire CLARA9 team at the Jet Propulsion Laboratory, 
California Institute of Technology, under a contract to the 
National Aeronautics and Space Administration, and at 
Carnegie Mellon University and Ames Research Center. 

8 References: 

[l] R. Alami et al. An Archtecture for Autonomy. 
International Journal of Robotics Research, 17(4), 
April 1998. 

[2] Ronald C. Arkin. Motor schema based mbilt robot 
navigation. Int 1 Journal of Robotics Research, 
4(8):92-112, 1989. 

8 



Matthew H. Austem. Generic Programming and the 
Stl: Using and Extending the C++ Standard Template 
Library. 
Addison-Wesley Professional Computing Series, 
Reading, MA, October 1998. 
J. Borrelly et al. The ORCCAD Architecture. 
International Journal of Robotics Research, 17(4), 
April 1998. 
Rodney A. Brooks. A robust layered control system 
for a mobile robot. IEEE Transactions on Robotics 
and Automation, 2(1):14-23, 1986. 
Bruce Powel Douglass. Real-Time UML - 
Developing Efficient Objects for Embedded Systems. 
Addison-Wesley Longman, Inc., Reading, MA, 
December 1998. 
Tara Estlin, &egg Rabideau, Darren Mutz, and Steve 
Chien. “Using continuous planning techniques to 
coordinate multiple rovers.” In Proceedings of the 
IJCAI99 Workshop on Scheduling and Planning meet 
Real-time Monitoring in a Dynamic and Uncertain 
World, Stockholm, Sweden, August 1999. 
I.A.D. Nesnas, R. Volpe, T. Estlin, H. Das, R. Petras 
D. Mutz, “Toward Developing Reusable Software 
Components for Robotic Applications” Proceedings 
of the International Conference on Intelligent Robots 
and Systems (IROS), Maui Hawaii, Oct. 29 - Nov. 3 
2001 

[16]I.A. Nesnas and M.M. Stanijsi’c. A robotic software 
developed using object-oriented design. In ASME 
Design Automation Conference, Minnesota, 1994. 

[17]Lynn Parker. Alliance: An architecture for fualt 
tolerant multi-robot coorperation. In ORNL 
TM12920, Oak Ridge National Laboratory, Oak 
Ridge, TN, 1995. 

[ 181 G. Pardo-Castellote S. Schneider, V. Chen and H. 
Wang. Controlshell: A software architecture for 
complex electromechanical systems. Int’l Journal of 
Robotics Research, 17(4), April 1988. 

[19]R. Simmons and D. Apfelbaum. A Task Description 
Language for Robot Control. In IEEE/RSJ Intelligent 
Robotics and Systems Conference, Vancouver 
Canada, October 1998. 

[20]Reid Simmons and David Apfelbaum. A task 
description language for robot control. In 
Proceedings of the International Conference on 
Intelligent Robots and Systems, Vancouver, Canada, 
October 1998. 

[2 11 Mobility Software. 
http:llisrobotics.com/nvi/software.htm. Real World 
Interface, a division of IRobot, S o m e d e ,  MA. 

[22]R. Volpe, I. Nesnas, T. Estl~n, D. Mutz, R. Petras, 
and H. Das. The claraty architecture for robotic 
autonomy. In Proceedings of the 2001 IEEE 
Aerospace Conference, Big Sky, Montana, March 
Inn1 
LVV 1. 

[10]R. Firby. Adaptive Execution in Complex Dynamic 
Worlds. PhJ3 thesis, Yale University, Department of 
Computer Science, 1989. 

[11]Forest Fisher, Steve Chien, Leslie Paal, Emily Law, 
Nassar Golshan, and Michael Stockett. An automated 
deep space communications station. In Proceedings 
of the 1998 IEEE Aerospace Conference, Aspen, CO, 
March 1998. 

[12]E.. Gat. On Three-Layer Architectures. In D. 
Kortenkamp, R. BOMS~SSO, and R. Murphy, editors, 
Artificial Intelligence and Mobile Robots, Boston, 
MA, 1998. MIT Press. 

[ 131 R Knight, S. Chien, T. Starbird, K. Gostelow, and R. 
Keller. Integrating model-based artificial intelligence 
planning with procedural elaboration for onboard 
spacecraft. In Proceedings of Space Ops 2000, 
Toulouse, France, June 2000. 

[ 141 K. Konolige, K. Myers, E. Ruspini, and A. Saffiotti. 
The saphira architecture: A design for autonomy. 
Journal of Experimental and Theoretical Artificial 
Intelligence, 9( 1):2 15-235, 1997. 

[ 151 Maja J. Mataric. Behavior-based control: Examples 
fiom navigation, learning, and group behavior. 
Journal of Experimental and Theoretical Artificial 
Intelligence, 2-3(9):232-336, 1997. 

9 

http:llisrobotics.com/nvi/software.htm



