
Patterns of Software Defect Data on Spacecraft

Robyn R. Lutz*
Jet Propulsion Laboratory
and Iowa State University

rlutz@,cs. iastate. edu

Abstract

The identification of patterns of software defect data
yields insights into improving the quality of both
operational and future spacecraft. Recent
investigations of software defect data at Jet Propulsion
Laboratoly has revealed both expected and unexpected
patterns of defect data. This paper describes the
results of applying this technique to both post-launch
(operational) and pre-launch (developmental)
spacecraft. It then describes four key challenges that
remain to achieving fuller utilization of defect analysis
in future systems.

1. Introduction
The identification of patterns of software defect data

yields insights into improving the quality of both
operational and hture spacecraft. This report describes
(I) the technique we developed to mine patterns from
JPL problem reporting databases and (2) the results of
applying this technique to both post-launch
(operational) and pre-launch (developmental)
spacecraft-.

The defect analysis technique used is an adaptation to
spacecraft of an approach originally developed at IBM.
The technique, called Orthogonal Defect Classification
(ODC), has been widely used in industry to identify
patterns in defect databases without incurring
significant additional costs [11.

*The research described in this paper was carried out
at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration. It was funded
by NASA's Office of Safety and Mission Assurance,
Center Initiative UPN 323-08. The first author's
research is supported in part by National Science
Foundation Grants CCR-0204 139 and CCR-0205588.

Inks Carmen Mikulski
Jet Propulsion Laboratory
Pasadena, CA 91 109-8099

ines. c. mikulski62jpl. nasa.gov

This paper reports results from two applications of the
adapted ODC technique at JPL. In the first application,
nearly two hundred post-launch problem reports of
critical software ISAs (Incident/Surprise/Anomalies)
on seven spacecraft were analyzed. Since the goal of
the research is to provide a sound, quantitative
foundation to enable improvements, a formalized pilot
study approach (the rigorous Glass criteria) was used.
Among the unexpected patterns reported here are: (1)
outdated or missing procedures were involved in one-
fifth of these critical incidents and (2) requirements
changes were rarely due to previous requirements
having been incorrect. Instead, the post-launch
changes involved new requirements for the software to
handle rare events or to compensate for hardware
failures or limitations. The ODC analysis of the
critical post-launch software anomalies on these
spacecraft generated a set of process recommendations
that are described in the paper.

The second application of the adapted ODC
technique at JPL was the analysis to date, in
collaboration with the Mars Exploration Rovers (MER)
project, of some three hundred problem reports
generated during testing. Among the useful findings
was that "false positive" problem reports (where testing
personnel believe that the software is behaving
incorrectly when it is, in fact, behaving correctly)
provide a degree of "crystal ball" forecasting regarding
which features of the software are likely to confuse
operational personnel. This knowledge can then be
applied via training or targeted documentation to
forestall similar problems post-launch.

This paper describes unexpected patterns such as this,
as well as patterns of defect data that confirm existing
testing and operational assumptions on the spacecraft.
The results appear to be broadly applicable to reducing
software defects that propagate to post-launch in future
space missions.

http://nasa.gov

The rest of the paper is organized as follows.
Section 2 describes the approach used to analyze the
defects and find the patterns. Section 3 presents and
evaluates the results, and discusses some consequences
of these results for the testing and operations of high-
consequence systems. Section 4 briefly describes
related work in defect analysis and the requirements

Global Surveyor, launched in 1996; Cassini/Huygens,
launched in 1997 to Saturn and Titan; Deep Space 1, an
ion-propulsion and remote-agent technology mission,
launched in 1998; Mars Climate Orbiter, launched
in1998; Mars Polar Lander, launched in 1999; and
Stardust, a comet sample-return mission, also launched
in 1999.

engineering of safety-critical systems. Section 5
describes four key challenges to be faced in future
work. Section 6 concludes the paper.

2. Approach

Figure 1 shows an overview of the approach that we
have taken in our study of defect data.

The second study extended the previous work
backward in time to analyze the problem reports
generated during integration and system testing on a
current spacecraft, the twin Mars Exploration Rover
spacecraft (MER), to be launched in May and June,
2003. These problem reports are called
ProbledFailure Reports or Developmental
ProbledFailure Reports. They are referred to here by

Product:
Charts
Mechanisms

Product: Product:

1
Figure 1 ODC Process Flow Recommendation Package

The data source used was software problem reports
from a multi-mission, institutional database. The work
reported here consists of two studies to date. The first
study analyzed the post-launch software problem
reports from seven spacecraft. These
Incident/Surprise/Anomaly (ISA) reports are referred
to here by the shorthand term “anomaly reports.” They
document the occurrence of unexpected behavior as
well as near-misses and actual defects during
operations.

The anomaly reports document not only defects but
also any behavior that is unexpected by the testing or
operational personnel. The anomaly reports are thus a
rich source of discovery of both latent requirements
(where the software does not behave correctly in some
situation) and of requirements confusion (where the
software’s behavior was correct but confused the tester
or operator).

The focus of this first study was on the post-launch
anomaly reports classified by their projects as critical
(e.g., “red-flag,’’ “potential-red-flag,” “high-criticality,”
etc.). There were 199 such problem reports on the
seven spacecraft studied. The spacecraft were the
Galileo mission to Jupiter, launched in 1989; Mars

the shorthand term “problem reports.” To date, 31 1
such problem reports have been analyzed in this way.
(This is roughly the Avionic Integration and Test
reports, and the Assembly, Test, Launch and
Operations reports, generated between April, 2002 and
Jan, 2003, that currently contain information in the
corrective action field).

The approach taken to the work reported here was to
analyze the anomaly reports generated during testing
and operations to gain insight into patterns of defects.
The high-level goal of this work is to reduce the
number of safety-critical software anomalies that occur
after launch.

Although the data format available in the problem-
reporting database differed somewhat among projects,
all the problem reports contain the following three
parts: a description of the problem, a subsequent
analysis of the problem, and a description of the
corrective action taken to close out the anomaly report.

The method of analysis for the anomaly reports was
an adaptation of Orthogonal Defect Classification
(ODC) [I] . ODC is a defect-analysis technique
developed at IBM in the 1980’s and widely used in

industry to measure both developmental and
operational defects. ODC provides a way to “extract
signatures from defects” and to correlate the defects to
attributes of the development process. We describe the
approach briefly here and refer the reader to [l 11 for a
fuller description of the classification method and steps
taken to avoid bias in the results.

The ODC-based approach uses four attributes to
characterize each defect:

Activity, which describes when the defect
occurred (e.g., System Test or Flight
Operations)

Trigger, which describes the environment or
condition that had to exist for the defect to
surface (e.g., a Fault Recovery condition or
HardwareBoftware interaction)

Target, which characterizes the high-level
entity that was fixed in response to the
defect’s occurrence (e.g., Flight Software or
Information Development), and

Type, which describes at a lower-level the
actual fix that was made (e.g., Documentation,
Procedure, or FunctiodAlgorithm).

For the post-launch anomalies, “Criticality” was a
fifth, implicit attribute (since only critical anomalies
were studied). For the testing anomalies, “Release
number” was added as an attribute.

Two analysts classified each anomaly to reduce bias.
Any disagreements regarding classifications were
reconciled during regular joint discussions. Spacecraft
personnel, especially on MER, generously assisted us
by answering domain and process questions. The
results of the ODC analysis were entered manually into
an Excel file. Pivot table charts were then produced in
Excel. These charts summarized and helped
visualization of the results in various cross-correlations
(e.g., Activity x Target x Type, Trigger x Target). The

0

data among spacecraft or phases could also be
automatically normalized for the displays if desired.
Figures 2 and 3 show examples of the charts thus
produced.

The second step in the analysis process (see Fig. 1) is
identifying defect patterns of interest. These patterns
are discovered in three ways. (1) The project asks
questions of interest, such as “how do the number of
PFRs of type “assignmenthitialization” (i.e., fixed by
changing the software in this way) compare among
releases in ATLO?” (2) The analyst or project
speculates about an expected pattern of data and
searches the pivot tables to confidreject this
speculation. For example, we expected that most
critical operational anomalies occurred during critical
mission phases, but found that this assumption was
false. (3) The analyst browses the pivot table charts for
surprising peaks or valleys. For example, there were
many more problem reports with ODC Type =
“Nothing Fixed” (i.e., no corrective action) than we
had expected.

When a pattern of interest in the defects is
discovered, the question is often “why? That is, the
reason for the pattern is sometimes not apparent. The
third step (Fig. 1) is then to perform a more detailed
analysis of each of the defects in the specific subset of
interest in order to explain the pattern. This step is
very similar to root cause analysis [7]. An advantage of
ODC is that it minimizes root cause analysis, which
tends to be time-consuming and costly. With the ODC
approach, root cause analysis only needs to be
performed for the subset of the defects identified as
belonging to an unexplained pattern of concern. For
example, to understand why so many problem reports
had no corrective action taken, we performed root-
cause analysis on the subset of problem reports
described in the previous paragraph. The results are
described in Section 3.1.

Once an understanding of the underlying causes of

Figure 2 Figure 3

the pattern of defects emerges, the fourth step of the
process is to translate this understanding into project or
process recommendations to avert this undesirable
pattern in the future.

For example, the ODC analysis of the post-launch
critical software anomalies showed the unexpected
pattern that many anomalies were being fixed by
changes to procedures. Root cause analysis showed
that this was because some needed procedures did not
exist. The recommendation was that a checklist be
maintained of operational procedures needed on
previous, similar spacecraft, and that comparison with
this list be performed as part of the operational
readiness for any new spacecraft.

3. Results and analysis

We describe in this section some defect patterns that
emerged from the ODC analysis, both during testing
and during operations, and describe the consequences
of our findings. Initial testing results have been
previously reported in [I 13; earlier post-launch results
have been reported in [9] and [lo].

3.1 Testing

Some patterns that we identified in the documented
testing problem reports were expected. For example,
more defect reports were generated in integration
testing than later on in system testing, a typical pattern.
Similarly, the percentage of defects triggered by the
testing of a single command, as opposed to the
behavior induced by testing a sequence of commands,
was greater in integration testing than in system testing,
another typical pattern in testing.

Other patterns of defect data from testing were
unexpected. We describe two of them here with the
caveat that this work is on-going (i.e., problem reports
are still being generated and analyzed).

One unexpected pattern was that 70 of the problem
reports had ODC Target = “NoneAJnknown” and Type
= “Nothing Fixed.” That is, about one-quarter of these
problem reports resulted in no corrective action. The
reason for this unexpected result can be further
investigated with root cause analysis to understand the
reason for the pattern. In this case, the pattern often
seemed to be due to bugs that were no longer present in
the software releases currently being tested by the time
that the problem report was investigated. Lending
credence to this analysis is the fact that of the 70 such
problem reports, only eight occurred in the later system

testing and the other 62 occurred earlier in integration
testing. There is some risk, of course, in the assumption
that if the defect no longer occurs in the current release
under the same circumstances, that no corrective action
is necessary. Often, however, the software and system
have evolved to the point where the conditions under
which the defect originally occurred cannot be
duplicated.

The root cause analysis also showed that some of the
problem reports in this pattern were not fixed for
another reason-that the software was, in fact,
functioning correctly but that the tester believed that
the software was behaving incorrectly. The
implications of these problem reports for operations is
discussed below.

A second unexpected pattern of defect data was that
80 of the 274 problem reports fixed by changes to
flight software had an ODC Type =
“Function/Algorithm.” A hypothesis to explain why
this pattern occurred is that it reflects the evolving (Le.,
unstable) requirements, especially with respect to latent
software requirements emerging from changes to, or
interfaces with, hardware components or other software
components. Root cause analysis to confirm or reject
this hypothesis awaits completion of additional
problem reports.

3.2 Operations

Table 1 summarizes four unexpected patterns
encountered in the critical software anomaly reports of
the seven launched spacecraft. For example, changes
or updates to procedures were involved in the fix to
many critical anomalies (23%). This suggests that, for
future spacecraft, assurance that needed procedures are
in place may be high-yield in terms of reducing critical
anomalies.

Similarly, we did not expect that ground software
would be involved in the corrective action of so many
critical anomalies (22%). This result indicates that
verification of ground software’s correctness is
essential for preventing critical anomalies.

Another finding of interest was that 4 1 % of the critical
post-launch software anomalies were triggered by
problems with data access or delivery (e.g., uplink or
downlink difficulties). It is well known that problems
occur in the interfaces between the systems, but
technical difficulties with downlink caused a surprising
number of critical anomalies.

I I Examples of Unexpected ISA patterns: Process Recommendation: I Example (from spacecraft): I

Additional end-to-end configuration ‘ testing

23% of critical ISAs had ground software
as Target (fix) I Software QA for ground software I Unable to process multiple submissions.

Fixed code.

30% of critical ISAs had procedures as
Type

~~~~~ 

Of these, 35% had Data access I delivey 
as Trigger 

34% of critical lSAs involving system test 
had software configuration as Trigger 
(cause) ; 24% had hardware configuration 
as Trigger 

Assemble checklist of needed 
procedures for future projects 

Better communication of changes 
and updates to operations 

Not in inertial mode during star calibration. 
Additions made to checklist to ‘prevent in 
future. 

Multiple queries for spacecraft engineering 
and monitor data failed. Streamlined 
notification to operators of problems. 

OPS personnel did not have a green 
command system for the uplink of two 
trajectory-correction command files. 
Problems resulted from a firewall 
configuration change. 

Table 1 Summary of Unexpected Patterns 

We found, as well, that the occurrence of “rare” 
events that merited additional fault protection 
requirements triggered about one-third of the 
anomalies. This suggests that effort spent during 
development on analyzing failure scenarios is effort 
well-spent, since rare events do, in fact, cause critical 
anomalies. 

In addition, the anomaly reports showed that many 
new requirements post-launch involved software 
compensation for degraded hardware functionality. 
What broke (hardware) sometimes wasn’t what got 
fixed (software). This seems to indicate that pre-launch 
contingency planning for post-launch scenarios in 
which some hardware functionality can be passed to 
software may help lower risk. 

recent study by Leszak, Perry, and Stoll [7]), so it is 
usually applied only to a subset of defects and is 
difficult to automate. This contrasts with the method 
described here, which is currently performed manually 
at 4-8 minuteddefect and supports partial automation 
(see section 5.1). 

Our results confirm the findings of some previous 
researchers that requirements-related defects 
predominate in critical systems [4,8]. A recent study by 
Lauesen and Vinter has also found similar results for 
non-critical systems, with slightly more than half the 
defect reports being requirements defects [6] .  Our 
results also confirm recent work that implicates 
requirements misunderstanding in accidents [ 121. 

5. Challenges 
4. Related Work 

The work described here draws on related work in 
several areas. We describe those areas briefly here and 
refer to the reader to (I 111 for fuller accounts of recent 
work in these areas. 

In the area of defect analysis, our work is based on 
the ODC technique introduced by Chillarege et al. [l]. 
The ODC technique has been used primarily for defect 
analysis of systems in development and testing, but 
also for defect-analysis of deployed systems [2], as we 
do with the operational spacecraft. The work described 
here extends previous work on the ODC technique to 
the spacecraft domain. 

Root-cause analysis is another defect analysis 
technique that has been widely used. Its disadvantage 
is that it is labor-intensive (1 9 minutes per defect in the 

The results described above show that detection of 
patterns in defect data is both feasible and usehl. As 
we look toward future work, four key challenges 
remain. We here describe each of these challenges and 
suggest approaches to addressing them. 

5.1 Automation 

Projects need near-real-time defect analysis for trend 
analysis and planning, both in testing and in operations. 
Without automation, such timely defect analysis is 
impossible. 

Partial automation is quite feasible and, in fact, can 
be supported by existing or planned problem-reporting 
systems. These systems require the initiator of the 
defect report, as well as the analyst and the 
implementer of the corrective action, to classify the 



defect and the fix from among a list of possible 
categories. Standardization and compliance within a 
project can provide project-level data; standardization 
and compliance within an organization can provide 
organization-wide data. One of our goals in this effort 
is to make clear to the projects and the organizations 
the benefits that can be reaped by such partial 
automation. 

Full automation is, however, a different issue. Our 
work has shown clearly that some tradeoffs exist 
between automation and accuracy. This is true for two 
reasons. First, defects are often not simple. However, 
defect-classification techniques, of necessity, impose a 
simplified structure on the defect report. A defect may 
have multiple triggers or causes, as well as multiple 
targets or corrective actions. The classification, on the 
other hand, usually requires the selection of one trigger 
and one target, or at least requires a choice as to which 
trigger and target are most important. If these 
selections are done at the time that the defect occurs, 
they may be done on the basis of partial, sometimes 
erroneous, information. 

Second, defect reports are rich sources of information 
regarding near-misses, speculations by domain experts 
as to possibly related occurrences, and confusions 
regarding programmed vs. expected behavior. 
Automation tends to “flatten” the defect report, 
removing these text-based insights. These two reasons 
lead us to recommend that h l l  automation (i.e., 
removal of textual descriptions) not be sought. Partial 
automation to detect patterns of interest is 
recommended, but the fuller investigation into why 
these unexpected patterns occur (Le., the root cause 
analysis of subsets of interest) requires the richness of 
information only available in the text-based 
description, 

5.2 Product-Line Perspective 

Many defect reports contain “forward-pointers’’ to 
the anticipated recurrence of the same or similar 
problem on future systems. For example, a defect 
report may note that the same interface defect found on 
one system may be able to recur in other systems using 
the same hardware unit. Both those testing and 
operational personnel who diagnose the reported 
defects, and those who determine and implement the 
corrective actions, regularly call out the possibility that 
the same problems will recur in similar systems. 
Essentially, these individuals, who are experts in this 
domain, demonstrate a product-line perspective. 

This broader focus is evident even when no fix is 
recommended on the current system (e.g., because the 
scenario of concern will never occur again on this 

particular mission). Even in these cases, attention is 
often drawn to the possibility of a similar problematic 
configuration occurring on other systems in the product 
line. 

Although such information is captured in the problem 
reports, it may never be retrieved and used. Better 
means (i.e., less ad-hoc techniques) are needed to mine 
the problem-reporting database for other, future 
systems in the same product line. As product-line 
practices continue to grow, the availability and tracking 
of product-line defect insights can reduce risk in 
similar systems. 

5.3 Integration with run-time monitoring 

Traditionally, run-time monitoring during operations 
has been considered to be the first line of defense 
against defects, with the occurrence of a defect 
indicating the failure or limitations of run-time 
monitoring. Pairing of run-time monitoring with 
operational defect analysis may be able to enhance the 
capabilities of run-time monitoring by identification of 
defect patterns of concern. 

Defect patterns may be able to provide updated input 
to run-time monitors, perhaps driving updates to the 
monitors’ parameters. The timeliness of the defect 
analysis is, of course, a key question and requires the 
kind of automation discussed above. 

Interest in better integration of run-time monitoring 
with defect analysis is especially important because 
systems on extended missions and highly autonomous 
systems will depend ever more heavily on run-time 
monitors to achieve robustness. 

5.4 Testing as a simulation of operations 

Our analysis found that misunderstandings by testers 
regarding what the behavior of the software should be 
(i.e., the requirements) are common. Sometimes the 
resulting problem reports lead to improved 
documentation of requirements, of design-decision 
rationales, or of procedures. Often, however, the 
reports are closed with no action taken. These problem 
reports are “false positives” with the software behaving 
correctly but the testing personnel not recognizing that 
fact. 

We found that such misunderstandings can recur 
fairly regularly. These conhsions consume time and 
resources (e.g., labor, test facilities). Mismatches 
between the system behavior expected by operational 
personnel and the actual system behavior (even if 
correct) adds risk to the mission. Weiss et al., for 



example, after studying several recent aerospace 
accidents, stated, “software-related accidents almost 
always are due to misunderstanding about what the 
software should do” [12]. 

We have recommended that those “false-positive” 
problem reports found in testing that meet the 
following criteria not be closed without additional 
documentation or training: (the scenario or 
configuration could recur in operations) AND (the 
misunderstanding could recur in operations) [I  11. 

An example of such an anomaly was when two 
different representations of the same time, although 
correctly used in the software, caused a reasonable 
misunderstanding during testing that could recur during 
operations. Since the testing personnel’s 
misunderstanding could readily be repeated by 
operational personnel or maintenance programmers 
during the mission, the problem report merits 
additional documentation before closure. Long-lived 
missions with turnover of personnel and consequent 
loss of knowledge may be particularly vulnerable to the 
risk of recurring requirements misunderstanding in 
operations. 

In addition, certain classes of requirements 
misunderstandings recurred in the problem reports. 
For example, there were several instances where subtle 
differences between, e.g., unresponsive and unavailable 
component states, or between the duration of a 
measured value and the duration of its current high- 
water mark, confused testing or operational personnel. 
It may be feasible to target specific classes of 
requirements confusions to receive additional 
verification, much as the verification of requirements 
for flight control systems currently involves awareness 
of common mode confusions by pilots. Work is on- 
going in this area. 

6. Conclusion 

Analysis of software defect data from testing and 
operations on these eight spacecraft has identified some 
surprising patterns. These results point the way to the 
next set of challenges to be addressed by future defect 
analysis. The challenges described in Section 5 
suggest that new models of defect analysis may be 
needed-to automate defect analysis without losing the 
domain insights contained in text-based reporting, to 
incorporate a product-line perspective, to integrate 
operational defect reporting with run-time monitoring, 
and to track and remedy requirements confusions in 
testing before they can recur in operations. Our fiture 
work in this area will be guided by these challenges. 

Acknowledgments. The authors thank Daniel 

Erickson and the Mars Exploration Rover engineers 
and test teams for their assistance and feedback. 

References 

[ I ]  R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, 
D. S. Moebus, B. K. Ray, and M.-Y. Wong, “Orthogonal 
Defect Classification-A Concept for In-Process 
Measurements, IEEE Trans on SW Eng, Nov. 1992, pp. 943- 
956. 

[2] S. Dalal, M. Hamada, P. Matthews, and G. Patton, “Using 
Defect Pattems to Uncover Opportunities for Improvement,” 
Proc. Int ‘1 Conf Applications of Software Measurement, 
1999. 

[3] R. L. Glass, “Pilot Studies: What, Why, and How?’, The 
Joumal of Systems and Software, vo. 36, pp. 85-97. 

[4] K. S. Hanks, J. C. Knight, and E. A. Strunk, “Erroneous 
Requirements: A Linguistic Basis for Their Occurrence and 
an Approach to Their Reduction,” Proc. 26Ih NASA Goddard 
Software Eng Vorkshop, IEEE, Greenbelt, MD, Nov., 2001. 

[ 5 ]  S. D. P. Harker, K. D. Eason, and J. E. Dobson, “The 
Change and Evolution of Requirements as a Challenge to the 
Practice of Software Engineering,” Proc. IEEE Intl Symp on 
Requirements Eng, IEEE Computer Society, Los Alamitos, 
CA, 1992, pp. 266-272. 

[6] S. Lauesen and 0. Vinter, “Preventing Requirements 
Defects: An Experiment in Process Improvement,” 
Requirements Engineering Journal, 2001, pp. 37-50. 

[7] M. Leszak, D.E. Perry and D. Stoll, “Classification and 
Evaluation of Defects in a Project Retrospective,” The 
Journal of Systems and Software, vol. 61, issue 3, 1 April, 
2002, pp. 173-187. 

[8] R. Lutz, “Analyzing Software Requirements Errors in 
Safety-Critical, Embedded Systems,” Proc IEEE IntI Symp 
Req Eng, IEEE CS Press, 1993, pp. 126-133. 

[9] R. Lutz and I. C. Mikulski, “Empirical Analysis of 
Safety-Critical Anomalies during Operations,’’ submitted, 
2002. 

[IO] R. Lutz and I. C. Mikulski, “Operational Anomalies as a 
Cause of Safety-Critical Requirements Evolution,” The 
Journal of Systems and Sofiare,  to appear. 

[I  11 R. Lutz and I. C. Mikulski, “Requirements Discovery 
during the Testing of Safety-Critical Software,” Proc of Int ’1 
Conf on Software Eng, 2003, to appear.. 

[ 121 K. A. Weiss, N. Leveson, K. Lundqvist, N. Farid, and 
M. Stringfellow, “An Analysis of Causation in Aerospace 
Accidents,” Space, 2001, Aug., 2001, 




