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Abstract 

The identification of patterns of software defect data 
yields insights into improving the quality of both 
operational and future spacecraft. Recent 
investigations of software defect data at Jet Propulsion 
Laboratoly has revealed both expected and unexpected 
patterns of defect data. This paper describes the 
results of applying this technique to both post-launch 
(operational) and pre-launch (developmental) 
spacecraft. It then describes four key challenges that 
remain to achieving fuller utilization of defect analysis 
in future systems. 

1. Introduction 
The identification of patterns of software defect data 

yields insights into improving the quality of both 
operational and hture spacecraft. This report describes 
( I )  the technique we developed to mine patterns from 
JPL problem reporting databases and (2) the results of 
applying this technique to both post-launch 
(operational) and pre-launch (developmental) 
spacecraft-. 

The defect analysis technique used is an adaptation to 
spacecraft of an approach originally developed at IBM. 
The technique, called Orthogonal Defect Classification 
(ODC), has been widely used in industry to identify 
patterns in defect databases without incurring 
significant additional costs [ 11. 
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This paper reports results from two applications of the 
adapted ODC technique at JPL. In the first application, 
nearly two hundred post-launch problem reports of 
critical software ISAs (Incident/Surprise/Anomalies) 
on seven spacecraft were analyzed. Since the goal of 
the research is to provide a sound, quantitative 
foundation to enable improvements, a formalized pilot 
study approach (the rigorous Glass criteria) was used. 
Among the unexpected patterns reported here are: ( 1 )  
outdated or missing procedures were involved in one- 
fifth of these critical incidents and (2) requirements 
changes were rarely due to previous requirements 
having been incorrect. Instead, the post-launch 
changes involved new requirements for the software to 
handle rare events or to compensate for hardware 
failures or limitations. The ODC analysis of the 
critical post-launch software anomalies on these 
spacecraft generated a set of process recommendations 
that are described in the paper. 

The second application of the adapted ODC 
technique at JPL was the analysis to date, in 
collaboration with the Mars Exploration Rovers (MER) 
project, of some three hundred problem reports 
generated during testing. Among the useful findings 
was that "false positive" problem reports (where testing 
personnel believe that the software is behaving 
incorrectly when it is, in fact, behaving correctly) 
provide a degree of "crystal ball" forecasting regarding 
which features of the software are likely to confuse 
operational personnel. This knowledge can then be 
applied via training or targeted documentation to 
forestall similar problems post-launch. 

This paper describes unexpected patterns such as this, 
as well as patterns of defect data that confirm existing 
testing and operational assumptions on the spacecraft. 
The results appear to be broadly applicable to reducing 
software defects that propagate to post-launch in future 
space missions. 
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The rest of the paper is organized as follows. 
Section 2 describes the approach used to analyze the 
defects and find the patterns. Section 3 presents and 
evaluates the results, and discusses some consequences 
of these results for the testing and operations of high- 
consequence systems. Section 4 briefly describes 
related work in defect analysis and the requirements 

Global Surveyor, launched in 1996; Cassini/Huygens, 
launched in 1997 to Saturn and Titan; Deep Space 1, an 
ion-propulsion and remote-agent technology mission, 
launched in 1998; Mars Climate Orbiter, launched 
in1998; Mars Polar Lander, launched in 1999; and 
Stardust, a comet sample-return mission, also launched 
in 1999. 

engineering of safety-critical systems. Section 5 
describes four key challenges to be faced in future 
work. Section 6 concludes the paper. 

2. Approach 

Figure 1 shows an overview of the approach that we 
have taken in our study of defect data. 

The second study extended the previous work 
backward in time to analyze the problem reports 
generated during integration and system testing on a 
current spacecraft, the twin Mars Exploration Rover 
spacecraft (MER), to be launched in May and June, 
2003. These problem reports are called 
ProbledFailure Reports or Developmental 
ProbledFailure Reports. They are referred to here by 
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Figure 1 ODC Process Flow Recommendation Package 

The data source used was software problem reports 
from a multi-mission, institutional database. The work 
reported here consists of two studies to date. The first 
study analyzed the post-launch software problem 
reports from seven spacecraft. These 
Incident/Surprise/Anomaly (ISA) reports are referred 
to here by the shorthand term “anomaly reports.” They 
document the occurrence of unexpected behavior as 
well as near-misses and actual defects during 
operations. 

The anomaly reports document not only defects but 
also any behavior that is unexpected by the testing or 
operational personnel. The anomaly reports are thus a 
rich source of discovery of both latent requirements 
(where the software does not behave correctly in some 
situation) and of requirements confusion (where the 
software’s behavior was correct but confused the tester 
or operator). 

The focus of this first study was on the post-launch 
anomaly reports classified by their projects as critical 
(e.g., “red-flag,’’ “potential-red-flag,” “high-criticality,” 
etc.). There were 199 such problem reports on the 
seven spacecraft studied. The spacecraft were the 
Galileo mission to Jupiter, launched in 1989; Mars 

the shorthand term “problem reports.” To date, 31 1 
such problem reports have been analyzed in this way. 
(This is roughly the Avionic Integration and Test 
reports, and the Assembly, Test, Launch and 
Operations reports, generated between April, 2002 and 
Jan, 2003, that currently contain information in the 
corrective action field). 

The approach taken to the work reported here was to 
analyze the anomaly reports generated during testing 
and operations to gain insight into patterns of defects. 
The high-level goal of this work is to reduce the 
number of safety-critical software anomalies that occur 
after launch. 

Although the data format available in the problem- 
reporting database differed somewhat among projects, 
all the problem reports contain the following three 
parts: a description of the problem, a subsequent 
analysis of the problem, and a description of the 
corrective action taken to close out the anomaly report. 

The method of analysis for the anomaly reports was 
an adaptation of Orthogonal Defect Classification 
(ODC) [I] .  ODC is a defect-analysis technique 
developed at IBM in the 1980’s and widely used in 



industry to measure both developmental and 
operational defects. ODC provides a way to “extract 
signatures from defects” and to correlate the defects to 
attributes of the development process. We describe the 
approach briefly here and refer the reader to [l 11 for a 
fuller description of the classification method and steps 
taken to avoid bias in the results. 

The ODC-based approach uses four attributes to 
characterize each defect: 

Activity, which describes when the defect 
occurred (e.g., System Test or Flight 
Operations) 

Trigger, which describes the environment or 
condition that had to exist for the defect to 
surface (e.g., a Fault Recovery condition or 
HardwareBoftware interaction) 

Target, which characterizes the high-level 
entity that was fixed in response to the 
defect’s occurrence (e.g., Flight Software or 
Information Development), and 

Type, which describes at a lower-level the 
actual fix that was made (e.g., Documentation, 
Procedure, or FunctiodAlgorithm). 

For the post-launch anomalies, “Criticality” was a 
fifth, implicit attribute (since only critical anomalies 
were studied). For the testing anomalies, “Release 
number” was added as an attribute. 

Two analysts classified each anomaly to reduce bias. 
Any disagreements regarding classifications were 
reconciled during regular joint discussions. Spacecraft 
personnel, especially on MER, generously assisted us 
by answering domain and process questions. The 
results of the ODC analysis were entered manually into 
an Excel file. Pivot table charts were then produced in 
Excel. These charts summarized and helped 
visualization of the results in various cross-correlations 
(e.g., Activity x Target x Type, Trigger x Target). The 

0 

data among spacecraft or phases could also be 
automatically normalized for the displays if desired. 
Figures 2 and 3 show examples of the charts thus 
produced. 

The second step in the analysis process (see Fig. 1) is 
identifying defect patterns of interest. These patterns 
are discovered in three ways. (1) The project asks 
questions of interest, such as “how do the number of 
PFRs of type “assignmenthitialization” (i.e., fixed by 
changing the software in this way) compare among 
releases in ATLO?” (2) The analyst or project 
speculates about an expected pattern of data and 
searches the pivot tables to confidreject this 
speculation. For example, we expected that most 
critical operational anomalies occurred during critical 
mission phases, but found that this assumption was 
false. (3) The analyst browses the pivot table charts for 
surprising peaks or valleys. For example, there were 
many more problem reports with ODC Type = 
“Nothing Fixed” (i.e., no corrective action) than we 
had expected. 

When a pattern of interest in the defects is 
discovered, the question is often “why? That is, the 
reason for the pattern is sometimes not apparent. The 
third step (Fig. 1) is then to perform a more detailed 
analysis of each of the defects in the specific subset of 
interest in order to explain the pattern. This step is 
very similar to root cause analysis [7]. An advantage of 
ODC is that it minimizes root cause analysis, which 
tends to be time-consuming and costly. With the ODC 
approach, root cause analysis only needs to be 
performed for the subset of the defects identified as 
belonging to an unexplained pattern of concern. For 
example, to understand why so many problem reports 
had no corrective action taken, we performed root- 
cause analysis on the subset of problem reports 
described in the previous paragraph. The results are 
described in Section 3.1. 

Once an understanding of the underlying causes of 

Figure 2 Figure 3 



the pattern of defects emerges, the fourth step of the 
process is to translate this understanding into project or 
process recommendations to avert this undesirable 
pattern in the future. 

For example, the ODC analysis of the post-launch 
critical software anomalies showed the unexpected 
pattern that many anomalies were being fixed by 
changes to procedures. Root cause analysis showed 
that this was because some needed procedures did not 
exist. The recommendation was that a checklist be 
maintained of operational procedures needed on 
previous, similar spacecraft, and that comparison with 
this list be performed as part of the operational 
readiness for any new spacecraft. 

3. Results and analysis 

We describe in this section some defect patterns that 
emerged from the ODC analysis, both during testing 
and during operations, and describe the consequences 
of our findings. Initial testing results have been 
previously reported in [I 13; earlier post-launch results 
have been reported in [9] and [lo]. 

3.1 Testing 

Some patterns that we identified in the documented 
testing problem reports were expected. For example, 
more defect reports were generated in integration 
testing than later on in system testing, a typical pattern. 
Similarly, the percentage of defects triggered by the 
testing of a single command, as opposed to the 
behavior induced by testing a sequence of commands, 
was greater in integration testing than in system testing, 
another typical pattern in testing. 

Other patterns of defect data from testing were 
unexpected. We describe two of them here with the 
caveat that this work is on-going (i.e., problem reports 
are still being generated and analyzed). 

One unexpected pattern was that 70 of the problem 
reports had ODC Target = “NoneAJnknown” and Type 
= “Nothing Fixed.” That is, about one-quarter of these 
problem reports resulted in no corrective action. The 
reason for this unexpected result can be further 
investigated with root cause analysis to understand the 
reason for the pattern. In this case, the pattern often 
seemed to be due to bugs that were no longer present in 
the software releases currently being tested by the time 
that the problem report was investigated. Lending 
credence to this analysis is the fact that of the 70 such 
problem reports, only eight occurred in the later system 

testing and the other 62 occurred earlier in integration 
testing. There is some risk, of course, in the assumption 
that if the defect no longer occurs in the current release 
under the same circumstances, that no corrective action 
is necessary. Often, however, the software and system 
have evolved to the point where the conditions under 
which the defect originally occurred cannot be 
duplicated. 

The root cause analysis also showed that some of the 
problem reports in this pattern were not fixed for 
another reason-that the software was, in fact, 
functioning correctly but that the tester believed that 
the software was behaving incorrectly. The 
implications of these problem reports for operations is 
discussed below. 

A second unexpected pattern of defect data was that 
80 of the 274 problem reports fixed by changes to 
flight software had an ODC Type = 
“Function/Algorithm.” A hypothesis to explain why 
this pattern occurred is that it reflects the evolving (Le., 
unstable) requirements, especially with respect to latent 
software requirements emerging from changes to, or 
interfaces with, hardware components or other software 
components. Root cause analysis to confirm or reject 
this hypothesis awaits completion of additional 
problem reports. 

3.2 Operations 

Table 1 summarizes four unexpected patterns 
encountered in the critical software anomaly reports of 
the seven launched spacecraft. For example, changes 
or updates to procedures were involved in the fix to 
many critical anomalies (23%). This suggests that, for 
future spacecraft, assurance that needed procedures are 
in place may be high-yield in terms of reducing critical 
anomalies. 

Similarly, we did not expect that ground software 
would be involved in the corrective action of so many 
critical anomalies (22%). This result indicates that 
verification of ground software’s correctness is 
essential for preventing critical anomalies. 

Another finding of interest was that 4 1 % of the critical 
post-launch software anomalies were triggered by 
problems with data access or delivery (e.g., uplink or 
downlink difficulties). It is well known that problems 
occur in the interfaces between the systems, but 
technical difficulties with downlink caused a surprising 
number of critical anomalies. 



I I Examples of Unexpected ISA patterns: Process Recommendation: I Example (from spacecraft): I 

Additional end-to-end configuration ‘ testing 

23% of critical ISAs had ground software 
as Target (fix) I Software QA for ground software I Unable to process multiple submissions. 

Fixed code. 

30% of critical ISAs had procedures as 
Type 

~~~~~ 

Of these, 35% had Data access I delivey 
as Trigger 

34% of critical lSAs involving system test 
had software configuration as Trigger 
(cause) ; 24% had hardware configuration 
as Trigger 

Assemble checklist of needed 
procedures for future projects 

Better communication of changes 
and updates to operations 

Not in inertial mode during star calibration. 
Additions made to checklist to ‘prevent in 
future. 

Multiple queries for spacecraft engineering 
and monitor data failed. Streamlined 
notification to operators of problems. 

OPS personnel did not have a green 
command system for the uplink of two 
trajectory-correction command files. 
Problems resulted from a firewall 
configuration change. 

Table 1 Summary of Unexpected Patterns 

We found, as well, that the occurrence of “rare” 
events that merited additional fault protection 
requirements triggered about one-third of the 
anomalies. This suggests that effort spent during 
development on analyzing failure scenarios is effort 
well-spent, since rare events do, in fact, cause critical 
anomalies. 

In addition, the anomaly reports showed that many 
new requirements post-launch involved software 
compensation for degraded hardware functionality. 
What broke (hardware) sometimes wasn’t what got 
fixed (software). This seems to indicate that pre-launch 
contingency planning for post-launch scenarios in 
which some hardware functionality can be passed to 
software may help lower risk. 

recent study by Leszak, Perry, and Stoll [7]), so it is 
usually applied only to a subset of defects and is 
difficult to automate. This contrasts with the method 
described here, which is currently performed manually 
at 4-8 minuteddefect and supports partial automation 
(see section 5.1). 

Our results confirm the findings of some previous 
researchers that requirements-related defects 
predominate in critical systems [4,8]. A recent study by 
Lauesen and Vinter has also found similar results for 
non-critical systems, with slightly more than half the 
defect reports being requirements defects [6] .  Our 
results also confirm recent work that implicates 
requirements misunderstanding in accidents [ 121. 

5. Challenges 
4. Related Work 

The work described here draws on related work in 
several areas. We describe those areas briefly here and 
refer to the reader to (I 111 for fuller accounts of recent 
work in these areas. 

In the area of defect analysis, our work is based on 
the ODC technique introduced by Chillarege et al. [l]. 
The ODC technique has been used primarily for defect 
analysis of systems in development and testing, but 
also for defect-analysis of deployed systems [2], as we 
do with the operational spacecraft. The work described 
here extends previous work on the ODC technique to 
the spacecraft domain. 

Root-cause analysis is another defect analysis 
technique that has been widely used. Its disadvantage 
is that it is labor-intensive (1 9 minutes per defect in the 

The results described above show that detection of 
patterns in defect data is both feasible and usehl. As 
we look toward future work, four key challenges 
remain. We here describe each of these challenges and 
suggest approaches to addressing them. 

5.1 Automation 

Projects need near-real-time defect analysis for trend 
analysis and planning, both in testing and in operations. 
Without automation, such timely defect analysis is 
impossible. 

Partial automation is quite feasible and, in fact, can 
be supported by existing or planned problem-reporting 
systems. These systems require the initiator of the 
defect report, as well as the analyst and the 
implementer of the corrective action, to classify the 



defect and the fix from among a list of possible 
categories. Standardization and compliance within a 
project can provide project-level data; standardization 
and compliance within an organization can provide 
organization-wide data. One of our goals in this effort 
is to make clear to the projects and the organizations 
the benefits that can be reaped by such partial 
automation. 

Full automation is, however, a different issue. Our 
work has shown clearly that some tradeoffs exist 
between automation and accuracy. This is true for two 
reasons. First, defects are often not simple. However, 
defect-classification techniques, of necessity, impose a 
simplified structure on the defect report. A defect may 
have multiple triggers or causes, as well as multiple 
targets or corrective actions. The classification, on the 
other hand, usually requires the selection of one trigger 
and one target, or at least requires a choice as to which 
trigger and target are most important. If these 
selections are done at the time that the defect occurs, 
they may be done on the basis of partial, sometimes 
erroneous, information. 

Second, defect reports are rich sources of information 
regarding near-misses, speculations by domain experts 
as to possibly related occurrences, and confusions 
regarding programmed vs. expected behavior. 
Automation tends to “flatten” the defect report, 
removing these text-based insights. These two reasons 
lead us to recommend that h l l  automation (i.e., 
removal of textual descriptions) not be sought. Partial 
automation to detect patterns of interest is 
recommended, but the fuller investigation into why 
these unexpected patterns occur (Le., the root cause 
analysis of subsets of interest) requires the richness of 
information only available in the text-based 
description, 

5.2 Product-Line Perspective 

Many defect reports contain “forward-pointers’’ to 
the anticipated recurrence of the same or similar 
problem on future systems. For example, a defect 
report may note that the same interface defect found on 
one system may be able to recur in other systems using 
the same hardware unit. Both those testing and 
operational personnel who diagnose the reported 
defects, and those who determine and implement the 
corrective actions, regularly call out the possibility that 
the same problems will recur in similar systems. 
Essentially, these individuals, who are experts in this 
domain, demonstrate a product-line perspective. 

This broader focus is evident even when no fix is 
recommended on the current system (e.g., because the 
scenario of concern will never occur again on this 

particular mission). Even in these cases, attention is 
often drawn to the possibility of a similar problematic 
configuration occurring on other systems in the product 
line. 

Although such information is captured in the problem 
reports, it may never be retrieved and used. Better 
means (i.e., less ad-hoc techniques) are needed to mine 
the problem-reporting database for other, future 
systems in the same product line. As product-line 
practices continue to grow, the availability and tracking 
of product-line defect insights can reduce risk in 
similar systems. 

5.3 Integration with run-time monitoring 

Traditionally, run-time monitoring during operations 
has been considered to be the first line of defense 
against defects, with the occurrence of a defect 
indicating the failure or limitations of run-time 
monitoring. Pairing of run-time monitoring with 
operational defect analysis may be able to enhance the 
capabilities of run-time monitoring by identification of 
defect patterns of concern. 

Defect patterns may be able to provide updated input 
to run-time monitors, perhaps driving updates to the 
monitors’ parameters. The timeliness of the defect 
analysis is, of course, a key question and requires the 
kind of automation discussed above. 

Interest in better integration of run-time monitoring 
with defect analysis is especially important because 
systems on extended missions and highly autonomous 
systems will depend ever more heavily on run-time 
monitors to achieve robustness. 

5.4 Testing as a simulation of operations 

Our analysis found that misunderstandings by testers 
regarding what the behavior of the software should be 
(i.e., the requirements) are common. Sometimes the 
resulting problem reports lead to improved 
documentation of requirements, of design-decision 
rationales, or of procedures. Often, however, the 
reports are closed with no action taken. These problem 
reports are “false positives” with the software behaving 
correctly but the testing personnel not recognizing that 
fact. 

We found that such misunderstandings can recur 
fairly regularly. These conhsions consume time and 
resources (e.g., labor, test facilities). Mismatches 
between the system behavior expected by operational 
personnel and the actual system behavior (even if 
correct) adds risk to the mission. Weiss et al., for 



example, after studying several recent aerospace 
accidents, stated, “software-related accidents almost 
always are due to misunderstanding about what the 
software should do” [12]. 

We have recommended that those “false-positive” 
problem reports found in testing that meet the 
following criteria not be closed without additional 
documentation or training: (the scenario or 
configuration could recur in operations) AND (the 
misunderstanding could recur in operations) [I  11. 

An example of such an anomaly was when two 
different representations of the same time, although 
correctly used in the software, caused a reasonable 
misunderstanding during testing that could recur during 
operations. Since the testing personnel’s 
misunderstanding could readily be repeated by 
operational personnel or maintenance programmers 
during the mission, the problem report merits 
additional documentation before closure. Long-lived 
missions with turnover of personnel and consequent 
loss of knowledge may be particularly vulnerable to the 
risk of recurring requirements misunderstanding in 
operations. 

In addition, certain classes of requirements 
misunderstandings recurred in the problem reports. 
For example, there were several instances where subtle 
differences between, e.g., unresponsive and unavailable 
component states, or between the duration of a 
measured value and the duration of its current high- 
water mark, confused testing or operational personnel. 
It may be feasible to target specific classes of 
requirements confusions to receive additional 
verification, much as the verification of requirements 
for flight control systems currently involves awareness 
of common mode confusions by pilots. Work is on- 
going in this area. 

6. Conclusion 

Analysis of software defect data from testing and 
operations on these eight spacecraft has identified some 
surprising patterns. These results point the way to the 
next set of challenges to be addressed by future defect 
analysis. The challenges described in Section 5 
suggest that new models of defect analysis may be 
needed-to automate defect analysis without losing the 
domain insights contained in text-based reporting, to 
incorporate a product-line perspective, to integrate 
operational defect reporting with run-time monitoring, 
and to track and remedy requirements confusions in 
testing before they can recur in operations. Our fiture 
work in this area will be guided by these challenges. 
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