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Abstract-The threshold performance of deep-space teleme- 
try is characterized for four turbo codes. The mathematical 
models given here are based on simulations that account for 
imperfect carrier synchronization. The required &/No de- 
pends on the code, the threshold frame error rate, the bit rate, 
and the signal-to-noise ratio and bandwidth of the carrier syn- 
chronization loop. The performance models are valid for co- 
herent detection of binary phase-shift keyed (BPSK) teleme- 
try. For residual-carrier tracking, these mathematical models 
are used to calculate the optimum modulation. 

1. INTRODUCTION 

Forward error-correction coding is almost always used in 
deep-space telemetry. The following four turbo codes are 
used in this paper: (1784, 1/3), (1784, 1/6), (8920, 1/3) and 
(8920, 1/6). [ l ]  The first number indicates the code block size 
and the second number the code rate. The baseline perfor- 
mance of these four turbo codes is defined by [2] 

F E R = f ( S l  ) 
NO base 

51 = f-l(FER). (2) 
NO base 

The baseline performance curves are shown in Figure 1. 
This paper examines the effect of imperfect carrier track- 

ing on the performance of these four turbo codes. The local 
oscillator is locked in frequency and phase with the incoming 
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Figure 1 : Baseline performance 
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telemetry signal by a carrier synchronization circuit. When a 
residual carrier is present, this circuit is a phase-locked loop 
that tracks the residual carrier. When the telemetry signal has 
a suppressed carrier, the synchronization circuit is a Costas 
loop that extracts frequency and phase information from the 
data sidebands. In either case, there is a carrier loop that 
tries to track the phase of the incoming signal but does so im- 
perfectly. There is always noise present in the carrier loop, 
and this is the main reason that the carrier loop phase error is 
nonzero. 

2. SIGNAL MODELS 
A binary phase-shift keyed (BPSK) telemetry signal with 

total signal power PT, carrier (angular) frequency w and mod- 
ulation index 0 is modeled as 

& sin(wt + 8d) = & cos 0 - sin(wt) 
+ m d sin 0 . cos(&). (3) 

The data are represented in bipolar form by d = f l  (an im- 
plicit function of time). As shown on the right-hand side of 
Eq. (3), the signal comprises, in general, two parts: a resid- 
ual carrier and data sidebands. If 8 = 90°, the residual car- 
rier disappears and all of the signal power appears in the data 
sidebands; this is called a suppressed carrier. Both residual- 
carrier and suppressed-carrier BPSK telemetry are used in 
deep-space communications. A key telemetry performance 
parameter is the bit energy to noise spectral density ratio, 
&,/No.  It is given by 

(4) 

where NO is the one-sided noise spectral density and R is the 
bit rate. 

In deep-space communications, a telemetry signal of the 
form given by Eq. (3) is coherently detected with a local oscil- 
lator of the form f i c o s ( w t  - $), where 4 (an implicit func- 
tion of time) represents the carrier loop phase error. When the 
data sidebands term, m d  sin 0 + cos(&), is multiplied by 
the local oscillator and the product is filtered to remove the 
double-frequency term, the result is a baseband signal of the 
form 

6 cos0 sin4 + & d s i n 0 .  cosq5. 

The first term above is typically negligible. (In the case of 
suppressed carrier, this first term is identically zero.) The sec- 
ond term represents the baseband telemetry signal. It should 
be noted that the fractional factor cos q5 degrades the available 
signal power. It is appropriate to model q!~ as a random process, 
since it has its origins in noise within the carrier loop. The ef- 
fect of imperfect carrier tracking is usually modeled like this: 

( 5 )  
Eb 

NO No base 
- (dB) - L (dB) 2 3 1 (dB). 

Eb/NoIbase is given by Eq. (2) and L (L 2 1) is the radio 
loss. This statement means that the available &/No less the 
radio loss must exceed the baseline bit energy to noise spectral 
density ratio for successful telemetry. 

3. RADIO Loss 
Radio loss is modeled here as an interpolation between the 

LRM and HRM radio losses of Appendix B. 

L (dB) = a .  LHRM (dB) + (1 - a) LLRM (dB) (6) 

The interpolation factor is given by 

1 
1 + ezp {CI - c2 ln (R /B , ) }  ’ a =  (7) 

where B, is the noise-equivalent carrier loop bandwidth. The 
coefficients c1 and c2 are given by 

(8) 
9.78, 1784-bit block codes 

c1 = { 7.78, 8920-bit block codes, 

(9) 
1.30, 1784-bit block codes 
0.92, 8920-bit block codes. c2 = { 

Radio loss as calculated from the above model is plotted 
in Figures 2, 3, 4 and 5 for residual and suppressed carrier 
and short and long code blocks. Also shown in those figures 
are the experimental determinations of radio loss [3] using the 
simulation method outlined in Appendix A. 
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Figure 2: Residual carrier (1784, 1/3 & 1/6) 

FER is plotted versus &/No in Figures 6 and 7. There is 
good agreement between the above loss models and the sim- 
ulation data. 

4. OPTIMIZING THE MODULATION INDEX 
FOR RESIDUAL-CARRIER BPSK 

In residual-carrier operation, it is important to optimize the 
modulation index. This is shown in Figure 8. 
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Figure 3: Residual carrier (8920, 1/3 & 1/6) 
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Figure 4: Suppressed carrier (1 784, 1/3 & 1/6) 
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Figure 5: Suppressed carrier (8920, 1/3 & 1/6) 
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Figure 6: Residual carrier (8920, 1/3) 
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Figure 7: Suppressed carrier (8920, 1/3) 
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Figure 8: Optimum modulation index (8920, 1/3) 
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Figure 9: Required PT/No vs. mod. index (8920, 1/3) 

Using the optimum modulation index minimizes the re- 
quired PT/No. This is shown in Figure 9. 

The required &/No is a function of bit rate. This is shown 
in Figure 10. It is clear from this figure that residual-carrier 
BPSK is to be preferred over suppressed-carrier BPSK for 
small bit rates. 

5. CONCLUSIONS 

The mathematical models for radio loss given here offer 
close agreement with simulated data. For residual-carrier 
BPSK the modulation index may be optimized using these 
models. 

APPENDIX A: SIMULATION OF IMPERFECT 
CARRIER TRACKING 

This Appendix describes how the simulations were done. 
The simulations were done for both residual-carrier and 
Costas loops. 

The carrier loop phase error is a random process. Realis- 
tic samples of this phase error were generated by the method 
shown in Figure A-1. In that figure 4[n] is the loop phase er- 
ror and qc[n] is thermal noise in the carrier loop. (The term 
$[n] could be used to model input phase dynamics, but in 
these simulations $[n] was set to 0.) g(.) is a memoryless, 
nonlinear function representing the phase detector. F ( z )  is 
the loop filter transfer function. Tu/(z  - 1) represents the 
numerically-controlled oscillator. Tu is the loop update period 
(the reciprocal of the loop update rate). The loop phase error 
samples generated by Figure A-1 (with appropriate statistics 
for q, [n]) have the correct marginal probability density func- 
tion and the correct correlation among nearby samples. 
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The loop filter transfer function is of the form 
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Figure 10: Required PT/No vs. bit rate (8920, 1/3) 

Figure A-l : Loop simulation 

The loop filter coefficients 6 1  and 62 are related to the noise- 
equivalent loop bandwidth B, by [4] 

8 
3 

6 1  = -Bc, 

32 
6 2  = -B2 

9 ,’ 

(A-2) 

(A-3) 

Eqs. (A-I), (A-2) and (A-3) are valid for a second-order, 
standard underdamped loop. Here is the difference equation 
corresponding to Figure A-1 with $[n] = 0 and with the F ( t )  
of Eq. (A-1): 

The phase detector function g(.) ,  normalized so that its 
derivative equals 1 at the origin, is given by 

sin(+), residual 
(A-5) 

f sin(2+), suppressed. 
9(4) = 

The noise qc[n] is thermal in origin. q,[nl] and qc[n2] are sta- 
tistically independent for nl # 722. qc[n] is Gaussian with 
zero mean and a variance equal to 

residual 

where No is the one-sided thermal noise spectral density. For 
a residual carrier loop, P, is the power of the residual car- 
rier. For a Costas loop tracking a suppressed carrier, Pd is the 
power in the data sidebands. 

In all simulations the loop update rate @/Tu) was less than 
the telemetry symbol rate, so a “re-sampling” was necessary 
in order to have a common sampling rate for the simulation of 
telemetry performance. A re-sampling was effected by using 
each sample of loop phase error multiple times. In the remain- 
der of this appendix a different integer time index (m, rather 
than n) is used as a reminder of the re-sampling. 

The effect of loop phase error on telemetry symbol detec- 
tion was simulated as described here. Denoting the antipo- 
dal telemetry symbols by d[m] (d[m] = fl), the effect of 
loop phase error was modeled as d[m] cos(+[m]). To this 
was added vd[m], representing the baseband noise of the data 
channel. The noise samples qd[m] are zero mean and Gaus- 
sian, with uncorrelated successive samples, and with a vari- 
ance equal to 
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where T, is the symbol period. The symbol period is related 1.5 I I I I I 
to the bit rate R through 

:R, rate 113 code 

&, rate 116 code. 
T,={  - - (A-8) 

The input to the software turbo decoder was 

44 . cos(4 [4 )  + 77&l, 
represented as a floating-point number. 

APPENDIX B: LOW-RATE AND HIGH-RATE 
MODELS 

Imperfect carrier tracking causes a (random) fractional fac- 
tor cos 4 to multiply the baseband signal at the output of the 
phase detector. The baseband signal is averaged over one 
symbol period T, by the matched filter. The carrier loop phase 
error 4 is a random process. When 4 changes quickly com- 
pared with the telemetry symbol rate, so that the average of 
cos (b over a time period T, fairly represents the average of 
cos 4 over all time, then the low-rate model (LRM) accurately 
predicts radio loss. (The name of this model comes from the 
fact that the symbol rate is low compared with the bandwidth 
of the process 4.) The conditions that make the LRM valid 
seldom occur in practice. Nonetheless, this model is still use- 
ful as an asymptote of performance. When, on the other hand, 
4 changes slowly compared with the duration of a code block 
of telemetry, the high-rate model (HRM) applies. Both of 
these models, which have long been available [ 5 ] ,  are sum- 
marized in this appendix. 

Both models are based on the assumption that the marginal 
probability density function of (b is Tikhonov [ 6 ] ,  

=P COB 9' residual 
Pd((b0 = 

where IO (.) is the modified Bessel function of the first kind of 
order zero. Figure B-1 shows the Tikhonov probability den- 
sity function (solid curve) for residual-carrier tracking with a 
carrier loop signal-to-noise ratio p = 10. An experimental 
distribution of 4 was obtained using the loop simulation de- 
scribed in Appendix A; this experimental distribution also is 
shown in Figure B-1 . (The simulation was done with a carrier 
loop bandwidth B, of 10 Hz, a loop update rate of 2000 Hz, 
and a p of 10.) As the figure clearly shows, the Tikhonovprob- 
ability density function accurately models the distribution of 
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Figure B-1 : Tikhonov density function 

where 11 (.) is the modified Bessel function of the first kind 
of order one. LLRM is greater than 1 and so has a positive 
number of decibels that diminish the effective EbINo, as 
indicated in Eq. (5). LLRM is a function of p, and it also 
depends on whether the tracking is done by a residual-carrier 
loop or a Costas loop; it is independent of the code and the 
threshold FER. 

High-Rate Model 

The HRM is based on the assumption that 4 is unvarying 
during an entire code block of telemetry. This condition is 
only met for very high bit rates. The HRM is a useful asymp- 
tote of performance, even when the high-rate condition is not 
met. Because 4 is unchanging during a code block in this 
model, the factor cos (b is not affected by the averaging of the 
matched filter. The bit energy to noise spectral density ratio 
for any given code block is diminished by a factor cos2 4. Dif- 
ferent code blocks will, in general, experience different fac- 
tors cos2 (b. The average FER is given by 

where p$(  4') is the Tikhonov probability density function of 
Eq. (B-1). The integral of Eq. (B-3) ignores the possibility 
that 4 could be outside the bounds 141 I ~ 1 2 .  A more gen- 
eral theory would consider such outlying values for (b and the 
probability of their occurrence. But for p 2 10, these outly- 
ing values occur with such low probability that it is legitimate 
to neglect them. 

The HRM radio loss LHRM is evaluated by first finding the 
Eb/No that satisfies Eq. (B-3) for the threshold FER. Then 
this Eb/No is converted to decibels and substituted into the 
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following equation: 

Eb 

NO No base 
LHRM (dB) = - (dB) - 31 (dB). (B-4) 

The result is always a positive number of decibels for L H R M .  
All of the following affect LHRM:  the code, the threshold 
FER, p ,  and the type of tracking loop. 
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